

Applied Biosystems SOLiD[™] 3 Plus System Instrument Operation Guide

October 2009

For Research Use Use Only. Not intended for any animal or human therapeutic or diagnostic use.

This user guide is the proprietary material of Applied Biosystems, LLC or its affiliates and is protected by laws of copyright. The customer of the SOLiD^M System is hereby granted limited, non-exclusive rights to use this user guide solely for the purpose of operating the SOLiD System. Unauthorized copying, renting, modifying, or creating derivatives of this user guide is prohibited.

Information in this document is subject to change without notice.

APPLIED BIOSYSTEMS DISCLAIMS ALL WARRANTIES WITH RESPECT TO THIS DOCUMENT, EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THOSE OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. TO THE FULLEST EXTENT ALLOWED BY LAW, IN NO EVENT SHALL APPLIED BIOSYSTEMS BE LIABLE, WHETHER IN CONTRACT, TORT, WARRANTY, OR UNDER ANY STATUTE OR ON ANY OTHER BASIS FOR SPECIAL, INCIDENTAL, INDIRECT, PUNITIVE, MULTIPLE OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING FROM THIS DOCUMENT, INCLUDING BUT NOT LIMITED TO THE USE THEREOF, WHETHER OR NOT FORESEEABLE AND WHETHER OR NOT APPLIED BIOSYSTEMS IS ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

TRADEMARKS:

Trademarks of Life Technologies Corporation and its affiliated companies: AB Logo™, Applied Biosystems®, HydroShear®, SOLiD™.

Covaris is a trademark of Covaris, Inc.

All other trademarks are the sole property of their respective owners.

© Copyright 2009, Life Technologies Corporation. All rights reserved.

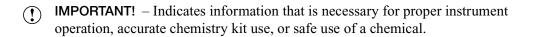
Part Number 4442357 Rev. A 10/2009

Contents

	Preface	vii . ix
Chapter 1	Introduction	. 1
Chapter 2	Prepare and install slides and reagents Materials and equipment required Workflow Tips Deposit the beads Install on-instrument reagents Install the slide(s) on the instrument Install reagent strip(s)	10 11 12 13 19 25
Chapter 3	Set Up, Control, and Monitor the Run Section 3.1 Set up and perform a workflow analysis (WFA) run Materials and equipment required Workflow Create a WFA run record Detect the focus range Start the WFA run Monitor the WFA run View the WFA report	 39 39 40 44 46 48
	Section 3.2 Set up and perform a sequencing run Materials and equipment required Workflow Create a sequencing (standard) run record Create a multiplex sequencing run record Detect the focus range Start the sequencing run Control the run Monitor the sequencing run	51 52 56 61 63 66

Appendix A	Required Materials
	Set up and perform a workflow analysis (WFA) run
Appendix B	Supplemental Procedures
	Clean the SOLiD TM Deposition Chamber using a sonicator \ldots
	Clean the SOLiD TM Deposition Chamber using Extran 300 $\dots \dots \dots \dots \dots \dots \dots \dots \dots 92$
	Clean the Instrument Buffer bottle
	Flush the fluidic lines
	Install the SOLiD [™] flowcell O-ring
	Clean the reagent strip cover
	Replace the SOLiD [™] Light Source
	Set up a run by importing a Run Definition file
	Manually find the focus range
	Reset the robot position
	Store the slide in a flowcell
Appendix C	On-Instrument Reagent Volumes and Reagent Strip Layouts 117
	Recommended fill volumes for on-instrument reagents
	Reagent strip layouts
Appendix D	Instrument Process Times 123
	Times for individual processes
	Times for entire processes
Appendix E	SOLiD [™] 3 Plus Analyzer Plumbing System Schematic
Appendix F	Checklists and workflow tracking forms
	Workflow checklists: set up a workflow analysis or sequencing run
	Workflow tracking: set up and perform a workflow analysis (WFA) run
	Workflow tracking: set up a sequencing run (1-well)
	Workflow tracking: set up a sequencing run (4-well) 133 Workflow tracking: set up a sequencing run (8-well) 134
Appendix G	The Covaris [™] S2 System
	Operation notes
	Covaris [™] S2 Programs

Appendix H	Instrument Warranty Information
	Computer configuration
	Limited product warranty
	Warranty period effective date
	Warranty claims
	Warranty exceptions
	Warranty limitations
	Damages, claims, and returns
Appendix I	Applied Biosystems End User Software License Agreement 145
	About this agreement
	Third party products
	Title
	Copyright
	License
	Limited warranty and limitation of remedies
	Limitation of liability
	General
Appendix J	Safety
	Instrumentation safety
	Symbols on instruments
	Safety labels on instruments
	General instrument safety
	Physical hazard safety
	Electrical safety
	Workstation safety
	Safety and electromagnetic compatibility (EMC) standards
	Chemical safety
	General chemical safety
	MSDSs
	Chemical waste safety
	Biological hazard safety
	Safety alerts
	Glossary
	Documentation
	Related documentation
	Send us your comments
	Index


Contents

Preface

Safety information

Note: For general safety information, see this Preface and Appendix J, "Safety" on page 153. For important safety information related to the use of the Covaris[™] S2 system, please refer to the user documentation of the product. When a hazard symbol and hazard type appear by a chemical name or instrument hazard, see the "Safety" Appendix for the complete alert on the chemical or instrument.

Safety alert words Four safety alert words appear in Applied Biosystems user documentation at points in the document where you need to be aware of relevant hazards. Each alert word—IMPORTANT, CAUTION, WARNING, DANGER—implies a particular level of observation or action, as defined below:

CAUTION! – Indicates a potentially hazardous situation that, if not avoided, may result in minor or moderate injury. It may also be used to alert against unsafe practices.

WARNING! – Indicates a potentially hazardous situation that, if not avoided, could result in death or serious injury.

 \triangle

DANGER! – Indicates an imminently hazardous situation that, if not avoided, results in death or serious injury. This signal word is to be limited to the most extreme situations.

Except for IMPORTANTs, each safety alert word in an Applied Biosystems document appears with an open triangle figure that contains a hazard symbol. *These hazard symbols are identical to the hazard symbols that are affixed to Applied Biosystems instruments* (see "Safety symbols" on page 154).

- **MSDSs** The MSDSs for any chemicals supplied by Applied Biosystems or Ambion are available to you free 24 hours a day. For instructions on obtaining MSDSs, see "MSDSs" on page 163.
 - IMPORTANT! For the MSDSs of chemicals not distributed by Applied Biosystems or Ambion contact the chemical manufacturer.

Safety labels on instruments The following CAUTION, WARNING, and DANGER statements may be displayed on Applied Biosystems instruments in combination with the safety symbols described in the preceding section.

Hazard symbol	English	Français
Â	CAUTION! Hazardous chemicals. Read the Material Safety Data Sheets (MSDSs) before handling.	ATTENTION! Produits chimiques dangereux. Lire les fiches techniques de sûreté de matériels avant toute manipulation de produits.
	CAUTION! Hazardous waste. Refer to MSDS(s) and local regulations for handling and disposal.	ATTENTION! Déchets dangereux. Lire les fiches techniques de sûreté de matériels et la régulation locale associées à la manipulation et l'élimination des déchets.
K	CAUTION! Potential slipping hazard.	ATTENTION! Risque potentiel d'avoir un sol glissant.
	WARNING! Hot lamp.	AVERTISSEMENT! Lampe brûlante.
<u>/</u> <u>}}</u>	WARNING! Hot. Do not remove lamp until 15 min after disconnecting supply.	AVERTISSEMENT! Lampe brûlante, après avoir déconnecté le câble d'alimentation de l'appareil, attendre environ 15 minutes avant d'effectuer un remplacement de la lampe.
	WARNING! Hot. Replace lamp with an Applied Biosystems lamp.	AVERTISSEMENT! Composants brûlants. Remplacer la lampe par une lampe Applied Biosystems.
	CAUTION! Hot surface.	ATTENTION! Surface brûlante.
	CAUTION! Replace only with Applied Biosystems recommended light source (PN 4388441).	ATTENTION! La Lampe devra être remplacée par un model recommandé par Applied Biosystems, Réf de la lampe: 4388441.
\wedge	DANGER! High voltage.	DANGER! Haute tension.
<u>7</u>	WARNING! To reduce the chance of electrical shock, do not remove covers that require tool access. No user-serviceable parts are inside. Refer servicing to Applied Biosystems qualified service personnel.	AVERTISSEMENT! Pour éviter les risques d'électrocution, ne pas retirer les capots dont l'ouverture nécessite l'utilisation d'outils. L'instrument ne contient aucune pièce réparable par l'utilisateur. Toute intervention doit être effectuée par le personnel de service qualifié venant de chez Applied Biosystems.
	CAUTION! Moving parts. Crush/pinch hazard.	ATTENTION! Pièces en mouvement, risque de pincement et/ou d'écrasement.
CAUTION! Potential overhead hazard.		ATTENTION! Présence d'objet pouvant heurter la tête.

How to use this guide

Text conventions	This guide uses the following conventions:		
	• Bold text indicates user action. For example:		
	Type 0 , then press Enter for each of the remaining fields.		
	• <i>Italic</i> text indicates new or important words and is also used for emphasis. For example:		
	Before analyzing, always prepare fresh matrix.		
	• A right arrow symbol (▶) separates successive commands you select from a drop- down or shortcut menu. For example:		
	Select File > Open > Spot Set.		
	Right-click the sample row, then select View Filter > View All Runs.		
User attention words	Two user attention words appear in Applied Biosystems user documentation. Each word implies a particular level of observation or action as described below:		
Note: – Provides information that may be of interest or help but is not the use of the product.			
	IMPORTANT! – Provides information that is necessary for proper instrument operation, accurate chemistry kit use, or safe use of a chemical.		

How to obtain support

For the latest services and support information for all locations, go to:

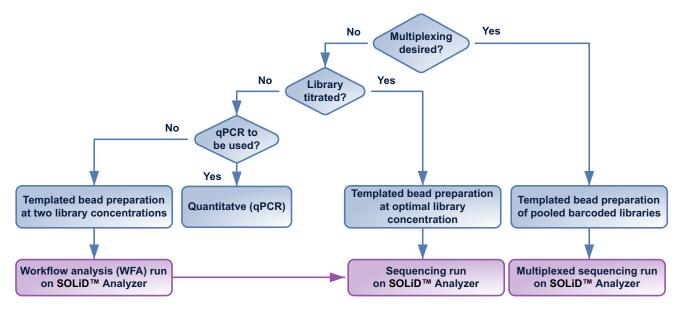
www.appliedbiosystems.com

At the Applied Biosystems web site, you can:

- Access worldwide telephone and fax numbers to contact Applied Biosystems Technical Support and Sales facilities.
- Search through frequently asked questions (FAQs).
- Submit a question directly to Technical Support.
- Order Applied Biosystems user documents, MSDSs, certificates of analysis, and other related documents.
- Download PDF documents.
- Obtain information about customer training.
- Download software updates and patches.

Preface How to obtain support

Introduction


SOLiD[™] 3 Plus System run types

On the Applied Biosystems SOLiD[™] 3 Plus System, you can perform three types of runs (see Table 1): workflow analysis (WFA), sequencing (standard), and multiplex sequencing.

	WFA	Sequencing (standard)	Multiplex sequencing
Purpose	 Assess various preparations of templated beads to determine potential quality of sequence data Evaluate fraction of P2- positive beads Use as a tool to determine deposition density for sequencing slides 	Generate sequencing data for fragment or mate-paired libraries	Generate multiplex sequencing data for fragment libraries
Run summary	P1 and P2 bead countingSingle ligation cycleReport generation	Up to 10 ligation cycles for each of 5 primers resulting in 50 bases per tag [‡]	Up to 10 ligation cycles for each of 5 primers resulting in 50 bases per tag <i>and</i> 1 ligation cycle for each of 5 primers resulting in 5 bases per barcode tag
Estimated run time [§]	~4 to 5 hours	 ~3 to 4 days for 25 bp ~4 to 4.5 days for 35 bp ~6 to 7 days for 50 bp 	 ~6 to 7 days for 50 bp ~4 to 4.5 days for 35 bp ~1 day for barcode
Deposition chamber	4-well	1-well4-well8-well	1-well4-well8-well
Number of beads	15 million beads per well	 520 million beads per well (1-well) 96 million beads per well (4- well) 41 million beads per well (8- well) 	 520 million beads per well (1-well) 96 million beads per well (4- well) 41 million beads per well (8- well)

Table 1 Run types on the SOLiD[™] 3 Plus System

Cone tag for fragment libraries and 2 tags for mate-paired libraries.Total run time for dual slide run. Times may deviate depending on imaging time.

Use Figure 1 to choose the run type that most closely meets your sequencing needs:

Figure 1 Relationship between the three types of SOLiD[™] System runs.

Workflow analysis
(WFA) runYou can optimize sequencing results by performing workflow analysis (WFA) runs. A
WFA run analyzes a quadrant of a slide that undergoes a single ligation cycle. The
quadrant contains beads deposited at a lower density than the density of beads
deposited for a sequencing run.

A WFA run determines the:

- *Optimal library concentration*: the library concentration for optimal preparation of templated beads using the library. You use this library concentration for any preparation of templated beads for that library as long as the scale of templated bead preparation is the same.
- *Bead enrichment efficiency*: the proportion of beads that have been successfully amplified using emulsion PCR (ePCR) as a fraction of the total number of beads prepared. You use this value to accurately deposit successfully amplified beads for a sequencing run.

WFA runs require the same materials as those materials needed for sequencing runs. If you perform multiple WFA runs routinely, you should order additional SOLiDTM Instrument Buffer Kits.

To perform a WFA run, prepare slide and install reagents according to the procedure in Chapter 2, "Prepare and install slides and reagents" on page 9, then set up and monitor the run according to the procedure in Chapter 3, "Set Up, Control, and Monitor the Run" on page 37.

Sequencing run During a SOLiD[™] sequencing run, two probe sets are used to maximize the fraction of "*mappable*" beads, read length, and sequencing throughput. (Mappable beads are beads amplified with template that map to the reference genome.) This protocol must be used for sequencing reads up to 50-bp in length for both mate-paired and fragment libraries.

Compared to terminator-based sequencing chemistry, with SOLiDTM sequencing, base information is not collected; instead, five rounds of primers (Primers A, B, C, D, and E) are used to sequence template by ligation of di-base labeled probes (see Figure 2 and Figure 4 on page 4). For sequencing of fragment libraries, the set of primers used are specific to the P1 Adaptor.

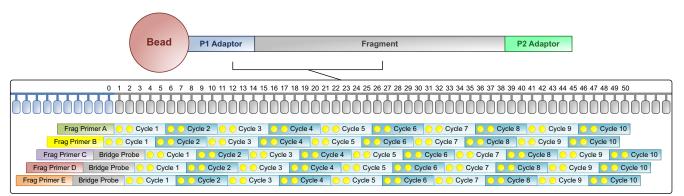


Figure 2 SOLiD[™] System interrogation of nucleotide positions for a 50-bp fragment sequencing run.

The typical workflow for a fragment sequencing run is shown below (see Figure 3).

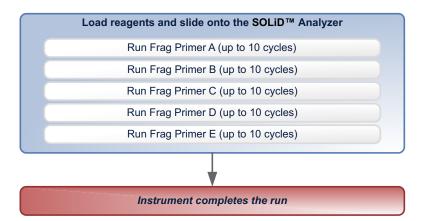


Figure 3 Typical workflow for a fragment sequencing run.

For sequencing of mate-paired libraries, the set of primers used to sequence one of the tags is specific to the P1 Adaptor, while the set of primers used to sequence the other tag is specific to the Internal Adaptor (see Figure 4 on page 4).

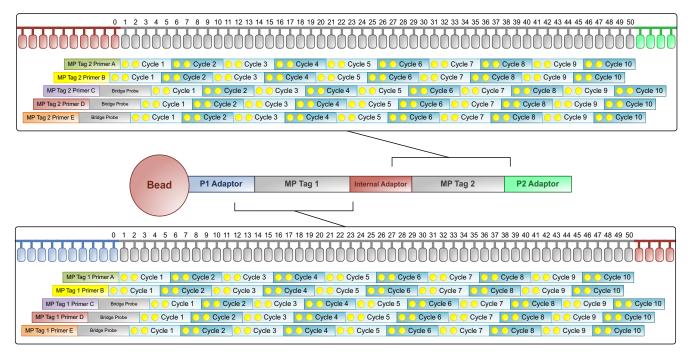


Figure 4 SOLiD^{$^{\text{M}}$} System interrogation of nucleotide positions for a 50-bp matepaired sequencing run.

The typical workflow of a mate-paired sequencing run is shown below (see Figure 5 on page 5).

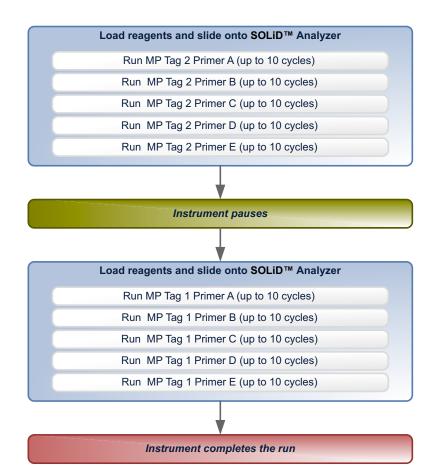
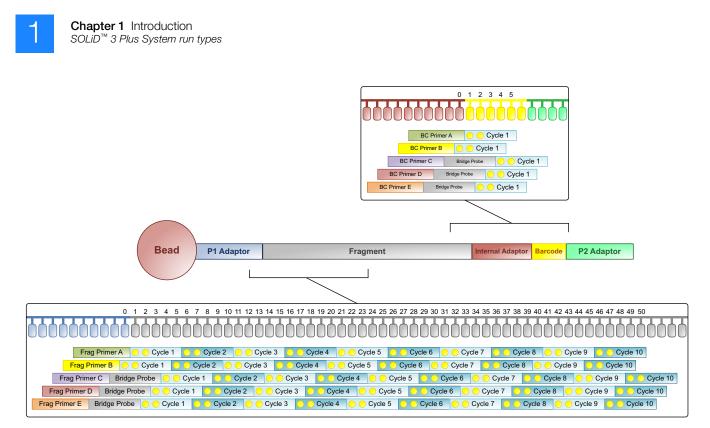
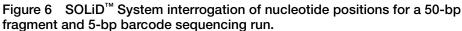




Figure 5 Typical workflow of a mate-paired sequencing run.

Multiplexed sequencing

For sequencing of barcoded fragment libraries, the set of primers used to sequence the fragment is specific to the P1 Adaptor, while the set of primers used to sequence the barcode sequence is specific to the Internal Adaptor (see Figure 6 on page 6).

The typical workflow of a multiplex sequencing run is shown in Figure 7 on page 7.

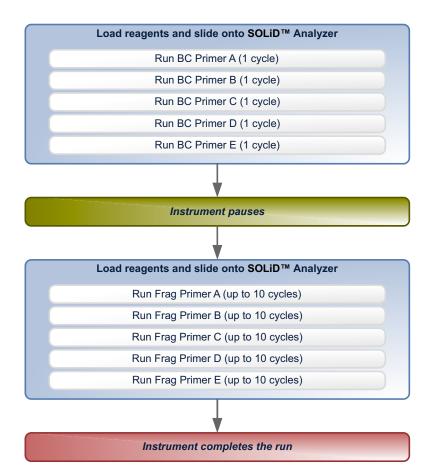


Figure 7 Typical workflow of multiplex fragment sequencing run.

To perform a sequencing or multiplex sequencing run, prepare slides and install slides and reagents according to the procedure in Chapter 2, "Prepare and install slides and reagents" on page 9, then set up and monitor the run according to the procedure in Chapter 3, "Set Up, Control, and Monitor the Run" on page 37.

Software operation and data analysis

The SOLiD[™] 3 Plus System comprises multiple complementary analysis software components that complete primary analysis (image acquisition, signal processing, color calling and quality control) and secondary analysis (alignment to a reference genome, SNP identification and base calling) of fragment and mate-paired experiments.

For information describing the relationship between ICS (SOLiDTM Instrument Control Software), SETS (SOLiDTM Experimental Tracking System), SAT (SOLiDTM Analysis Tools), and BioScope, refer to the *SOLiDTM SETS Software v3.5 Getting Started Guide* (PN 4444007).

For additional secondary and tertiary analysis tools, visit the SOLiDTM Software Development Community website (http://solidsoftwaretools.com). One can integrate standalone tools from the SOLiDTM Software Development Community with the SAT pipeline or BioScope to perform more automated analysis. For details, see the SOLiDTM Analysis Tools (SAT) v3.5 Reference Guide (PN 4443929) or SOLiDTM BioScope Software v1.0 Getting Started Guide (PN 4442694).

Prepare and install slides and reagents

This chapter covers:

Materials and equipment required	10
Workflow	11
Tips	12
Deposit the beads	13
Install on-instrument reagents.	19
Install the slide(s) on the instrument	25
Install reagent strip(s)	30

Materials and equipment required

See Appendix A, "Set up and perform a workflow analysis (WFA) run" on page 78 for a list of equipment, kits, and consumables necessary to set up a workflow analysis (WFA) run.

See Appendix A, "Set up and perform a sequencing run" on page 82 for a list of equipment, kits, and consumables necessary to set up a sequencing run.

Workflow

Set up, control, and monitor the run (see Chapter 3) Deposit the beads on the slide(s) For a WFA run, the beads are quantitated using the SOLiD[™] Bead Concentration Chart (PN 4415131), and 15 million beads are deposited in one well of a four-well SOLiD[™] Deposition Chamber.

For a sequencing run, the choice of $SOLiD^{TM}$ Deposition Chamber depends on factors such as the requirements of the experiment, number of libraries being assessed, the size of the genome, and the sequencing coverage required. Three $SOLiD^{TM}$ Deposition Chamber designs are available for use (see Table 2).

Deposition Chamber	Number of image panels	
1-Well	2357	
4-Well	426 per well	
8-Well	186 per well	

Table 2 Three deposition chamber designs

Install oninstrument reagents

1× Instrument Buffer is prepared from glycerol and 10× Instrument Buffer provided in the SOLiD[™] Instrument Buffer Kit. 1× Instrument Buffer may be formulated in 8-L batches as needed or may be prepared in larger volumes and stored at 4 °C until ready for use. T4 Ligase Buffer, Imaging Buffer, and Cleave Solution 2 are each prepared by

reagents

	combining the two parts provided in the SOLiD [™] Instrument Buffer Kit. Cool the chiller block prior to installation of buffers. The tubing from the Instrument and Storage Buffer bottles to the flowcell is long; prime the lines before the slides are installed in the flowcell.
Install slide(s) on the instrument	Remove the slide from the Deposition Chamber and prepare it for installation on the instrument. Each flowcell can be loaded with the slide <i>independently</i> of each other.
Install reagent strip(s) on the instrument	Install the workflow analysis or sequencing reagent strips on the reagent strip chiller block. Cool the chiller block prior to installation of reagent strips.

Tips

- **General** Prior to deposition, store the slides appropriately and keep them dry in a desiccator to ensure optimal bead deposition and to minimize loss of P2-enriched beads. Remove the slides from the desiccator only when you are ready to deposit the beads onto the slide.
 - Use Eppendorf LoBind tubes to perform all steps requiring 0.5-mL, 1.5-mL, and 2.0-mL tubes.
 - Adjust microcentrifuge speeds and times according to the g-forces specified in the protocols.

• The procedures are optimized for the Covaris[™] S2 System. The Covaris[™] S2 System System specially adapted to prepare beads for the Applied Biosystems SOLID[™] 3 Plus System. Do not use the Covaris S1 sonicator or an unadapted Covaris S2 System for bead preparation. For more information, contact an Applied Biosystems SOLID[™] 3 Plus System applications specialist.

- Ensure that the Covaris[™] S2 System is degassed, that no bubbles are present in the system, and that the instrument and tube are properly aligned for appropriate sonication of beads.
- To ensure optimal sonication by the Covaris[™] S2 System, use the appropriate adaptor with the Covaris[™] S2 System. For sample volumes ≤ 200 µL, use a 0.5-mL LoBind tube and 0.65-mL tube adaptor. For sample volumes between 200 µL and 600 µL, use a 1.5-mL LoBind tube and 1.5-mL tube adaptor. For sample volumes between 600 µL and 1.2 mL, use a 2.0-mL LoBind tube and the same adaptor as used for the 1.5-mL tubes. Place the tube collar at the indicator line of the adaptor.

Deposit the beads

Wash the beads Note: The bead wash procedure is for one WFA or sequencing run sample.

- Sonicate P2-enriched beads using the Covalent Declump 1 program on the Covaris[™] S2 System (for program conditions, see "Covalent Declump 1" on page 136). Pulse-spin, but do not pellet the beads.
- If a WFA run has already been performed, use the results from the WFA report to estimate the bead concentration and proceed to step 5; otherwise, use the SOLiD[™] Bead Concentration Chart (PN 4415131) to estimate the bead concentration (see Figure 8).

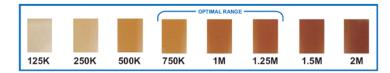


Figure 8 The SOLiD[™] Bead Concentration Chart. For best results, use the *Applied Biosystems SOLiD[™] Bead Concentration Chart* (PN 4415131), supplied separately.

3. Adjust the volume of beads so that the color of the bead solution matches a color in the optimal range (750,000 beads/ μ L to 1.25 million beads/ μ L; see Figure 8 and Figure 9).

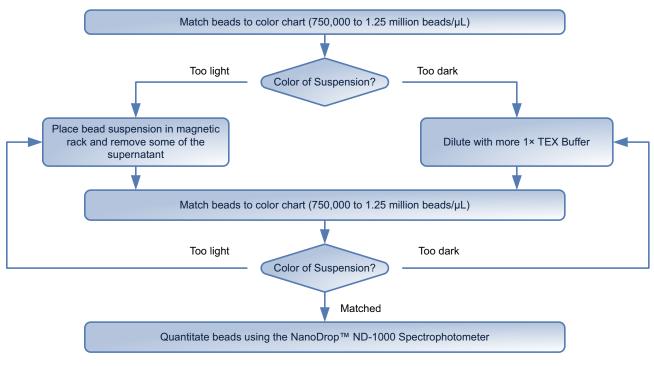


Figure 9 SOLiD[™] Bead Concentration Chart workflow.

- 4. When the bead concentration is within the accurate range, quantitate the beads using the NanoDrop[™] ND-1000 Spectrophotometer [refer to "Quantitate the beads using the NanoDrop[™] ND-1000 Spectrophotometer," in the *Applied Biosystems SOLiD[™] 3 Plus System Templated Bead Preparation Guide* (PN 4442695)].
- **5.** Transfer the appropriate number of beads to a 1.5-mL LoBind tube and store the remaining beads at 4 °C.

Table 3	Number of b	eads to use a	ccording to the	e type of run	and deposition
chamber	•				
-					

Type of run	SOLiD [™] Deposition chamber	Target number of P2-positive beads per well [‡]	Maximum threshold number of beads per well [‡]
WFA	4-well	15 million	30 million
Sequencing	1-Well	520 million	590 million
Sequencing	4-Well	96 million	108 million
Sequencing	8-Well	41 million	47 million

‡ Note: The targeted bead deposition density is 220,000 P2-positive beads per panel, and the maximum threshold bead deposition density for all beads (P2-positive or not) is 250,000 beads per panel. Exceeding the maximum threshold number of beads per well may result in decreased sequence quality. The calculated bead concentration based on the WFA report is the most accurate because it specifically measures the concentration of P2-positive beads (see "Determine the bead deposition density for a sequencing run" on page 50). If WFA run results are not available, it is possible to estimate the bead concentration using the SOLiD™ Bead Concentration Chart and NanoDrop™ spectrometer measurement. It is recommended you target an additional overage volume to account for measurement variability, especially for off-instrument bead quantitation. Typical overages can range as high as 20% to 50% and can vary with the library, operator, sample type, and other factors.

- **6.** Place the tube of aliquoted beads in a magnetic rack for at least 1 minute. After the solution clears, remove and discard the supernatant.
- 7. Resuspend the beads in 400 μ L of Deposition Buffer, vortex thoroughly, then pulse-spin.
- **8.** Place the tube in a magnetic rack for at least 1 minute. After the solution clears, remove and discard the supernatant.
- 9. Repeat steps 7 and 8 *twice*.
- **10.** Resuspend the beads in the volume of Deposition Buffer determined by calibration of the SOLiD[™] Deposition Chamber with the SOLiD[™] Opti Slide carrier (see Table 4 on page 15).
 - IMPORTANT! For upgraded systems, the SOLiD[™] Deposition Chamber should be recalibrated using the SOLiD[™] Opti Slide Carrier to determine the exact deposition volume.

Deposition chamber Volume per well (µL)			
1-Well	550		
4-Well	400		
8-Well	300		

Table 4 Approximate Deposition Buffer volumes

- **Deposit the beads 1.** Thoroughly clean, rinse, and dry the SOLiD[™] Deposition Chamber overnight before deposition:
 - a. Clean the SOLiD[™] Deposition Chamber using a sonicator or Extran 300 detergent (see "Clean the SOLiD[™] Deposition Chamber using a sonicator" on page 90 or "Clean the SOLiD[™] Deposition Chamber using Extran 300" on page 92).
 - Note: Do not wash the SOLiD[™] Deposition Chamber with ethanol because ethanol damages the adhesive on the O-ring.
 - b. Blot the SOLiD[™] Deposition Chamber dry on a lab wipe. Be particularly careful to dry around the O-ring and to remove fluid from the fill ports.
 - c. Place the SOLiD[™] Deposition Chamber in an incubator at 37 °C for at least one hour to complete drying.
 - **2.** Insert a new slide into the SOLiD[™] Opti Slide Carrier (see Figure 10):
 - **IMPORTANT!** Do not touch the slide surface.
 - IMPORTANT! The SOLiD[™] Opti Slide Carrier is painted blue across the side and is labeled OPTI on the surface (Figure 10). If you are using the SOLiD[™] Opti reagent strips for sequencing, you must use the SOLiD[™] Opti Slide Carrier. Using a different slide carrier may lead to run failure.

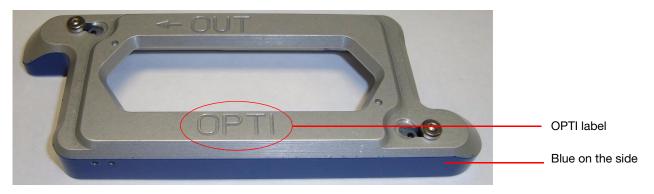
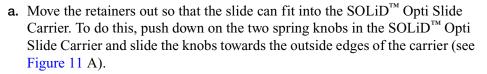



Figure 10 The SOLiD[™] Opti Slide Carrier is labeled OPTI and painted blue on the side.

- **b.** Place the slide against the alignment nubs in the SOLiD[™] Opti Slide Carrier.
- c. Ensure that the slide is precisely positioned in the SOLiD[™] Opti Slide Carrier and then slide the retainers inward until they hold the slide in position (see Figure 11 B).
 - Note: To move the retainers over the slide, do not push down the knobs.

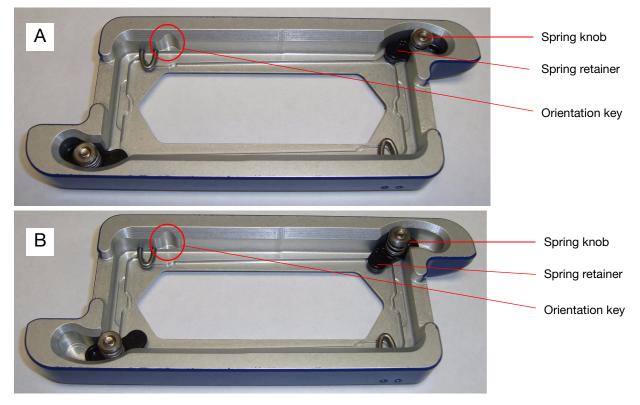


Figure 11 (A) The SOLiD[™] Opti Slide Carrier with spring knobs and retainers pushed out and (B) with spring knobs and retainers pushed in (the slide is held under the retainers.)

- Place the SOLiD[™] Opti Slide Carrier assembly into SOLiD[™] Deposition Chamber base, then place the appropriate SOLiD[™] Deposition Chamber lid on top (see Figure 12).
 - Note: The SOLiD[™] Deposition Chamber top must engage with the orientation key to fit properly. The orientation key is in the lower-left position when the SOLiD[™] Opti Slide Carrier assembly is placed on the instrument. This orientation must be maintained in order to preserve the correct sample order when the 4-well or 8-well SOLiD[™] Deposition Chamber is used.

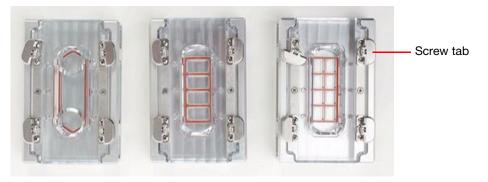


Figure 12 SOLiD[™] Deposition Chambers: 1-well, 4-Well, and 8-well.

- 4. Tighten the four screw tabs on the SOLiD[™] Deposition Chamber in a crisscross pattern until the lid is securely attached.
- **5.** Twist the tabs flat.
- 6. Sonicate the beads using the Covalent Declump 3 program on the Covaris[™] S2 System (for program conditions, see "Covalent Declump 3" on page 137). Afterwards, pulse-spin, but do not pellet the beads.
- 7. Repeat step 6.
- **8.** Use a pipettor with an appropriate tip to pipette the bead solution up and down a few times, then withdraw the sample of templated beads from the microcentrifuge tube.
 - () **IMPORTANT!** Samples must be deposited onto the slide immediately after sonication to minimize clumping and maximize monolayering.
- **9.** Perform one of the following sequences:

If the SOLiD [™] Deposition Chamber has…	Then perform steps		
1 well	10, 11, 14, and15		
4 or 8 wells	12 to 15		

- **10.** Elevate and tilt the SOLiD[™] Deposition Chamber with the entry porthole of the well at the lowest point.
- 11. Carefully pipette a sample of templated beads into the well through the porthole. As the area of the well fills, lower the top of the SOLiD[™] Deposition Chamber so that it becomes level.
 Proceed to step 14.
- **12.** With the SOLiD[™] Deposition Chamber *flat*, carefully pipette a sample of templated beads into one of the 4 or 8 wells through the porthole.
- **13.** Repeat steps 8 to 13 to fill each of the remaining wells with each sample of templated beads. Note each sample's well position relative to the slide orientation.
- 14. Place 3-mm adhesive disks over all the portholes in the SOLiD[™] Deposition Chamber.
- **15.** Incubate the SOLiD[™] Deposition Chamber at 37 °C for 1.5 hours.

SOLiD[™] 3 Plus System Instrument Operation Guide October 2009

Install on-instrument reagents

- Note: For information about recommended fill volumes for on-instrument reagents, see "Recommended fill volumes for on-instrument reagents" on page 118.
- Prepare 1× Instrument Buffer
- **Note:** Prepare buffers just prior to use on the SOLiDTM 3 Plus Analyzer.
- 1. Add 800 mL of 10× Instrument Buffer to an empty 8-L reagent bottle.
 - IMPORTANT! Regular cleaning of the 8-L Instrument Buffer bottle is required for every run (see "Clean the Instrument Buffer bottle" on page 94) Failure to clean the Instrument Buffer bottle regularly may allow microbial contaminants to proliferate in the system. Never top off the Instrument Buffer bottle.
- **2.** Add 1600 mL of glycerol to the reagent bottle. Use a graduated cylinder to measure the glycerol.
- **3.** Add 5600 mL of double-distilled water, rinsing residual glycerol from the graduated cylinder.
- **4.** Using a clean magnetic stir bar, mix the solution for 10 minutes to ensure homogeneity.
- 5. Remove the stir bar and install the prepared buffer on the SOLiD[™] 3 Plus Analyzer or store at 4 °C until ready for use.
- Prepare 1× T4
Ligase Buffer1. Transfer the contents of the 1× T4 Ligase Buffer Part 1 tube to the 1× T4 Ligase
Buffer Part 2 bottle.
 - **2.** Gently mix the contents by slowly inverting the bottle 3 to 5 times to ensure thorough mixing and to minimize bubbles.
- Prepare Imaging Buffer 1. Transfer the contents of the Imaging Buffer Part 1 bottle to the contents of the Imaging Buffer Part 2 bottle.
 - **2.** Gently mix the contents by slowly inverting the bottle 3 to 5 times to ensure thorough mixing and to minimize bubbles.
 - Prepare Cleave Solution 21. Transfer the contents of the Cleave Solution 2 Part 1 bottle to the contents of the Cleave Solution 2 Part 2 bottle.
 - **2.** Gently mix the contents by slowly inverting the bottle 3 to 5 times to ensure thorough mixing and to minimize bubbles.

- Install reagents
 1. If needed, flush the tubing of the SOLiD[™] 3 Plus Analyzer fluidics system (see "Flush the fluidic lines" on page 95).
 - Note: If the SOLiD[™] 3 Plus Analyzer is in continuous use, the fluidics system should be flushed every three months. If the SOLiD[™] 3 Plus Analyzer will sit idle for more than two weeks, the fluidics system should be flushed and the instrument powered down with the fluidics lines empty.
 - 2. Double-click the SOLiD[™] Instrument Control Software icon to launch the SOLiD[™] Instrument Control Software, if it is not already open.
 - **3.** Under the System Status menu, select **Cooling** from the Chiller drop-down menu (Figure 13).

File Tools Wizards Wi	ndow Mock Help			
Welcome: lab_user	Flow Cell 1	Flow Cell 2		
SOLID	Run Name:	Run Name:		
	Created by:	Created by:		
	📲 Assign Run 🎆 Edit Run 🥒 Clear 🔤 Run Logs 🔋 Heat Map	📲 Assign Run 📷 Edit Run 🥒 Clear 💷 Run Logs 🚦 Heat Map		
式 Setup	Sample Slide	Sample Slide		
🔨 Create Runs	Show Samples >>	Show Samples >>		
Manage Runs	2			
📑 Run				
Flow Cell Details				
👩 Cycle Scan				
Flow Cell 1				
1000 M				
Flow Cell 2				
_	Protocol	Protocol		
System Status 🛛 🕜				
Prime Buffer Line:				
Prime				
Chiller: 4.1 C	fluidic completed.	fluidic completed.		
Cooling 💌		and the second sec		
Lamp: 200 hrs On 🂡	Fludes Imaging	Fluides Imaging		
Reset	No Run Defined	No Run Defined		
	Noad Flowcell	🚵 Load Flowcell		
Door: Closed-Locked 🋐	Start Run	▶ Start Run		
🔂 Unlock Doors				
- Oracit Door 2				
Imaging is Online	Fluidics is Online	72M of 297M		

Figure 13 Select **Cooling** to cool the flowcell.

4. After the chiller temperature is < 10 °C, install the prepared 1× Instrument Buffer and Storage Buffer into the appropriate positions in the cabinet (see Figure 14).

CAUTION! POTENTIAL OVERHEAD HAZARD. Use caution when working inside the cabinet.

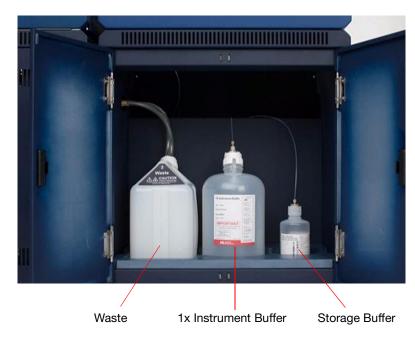


Figure 14 Positions of buffers and waste in the cabinet.

5. Install Cleave Solution 1, prepared Cleave Solution 2, and Reset Buffer in the appropriate positions on the side of the instrument (see Figure 15 on page 22).

Figure 15 Positions of reagent bottles on the side of the instrument.

6. Install the prepared Imaging Buffer, prepared 1× T4 Ligase Buffer, and Phosphatase Buffer into the appropriate positions in the chiller block (see Figure 16).

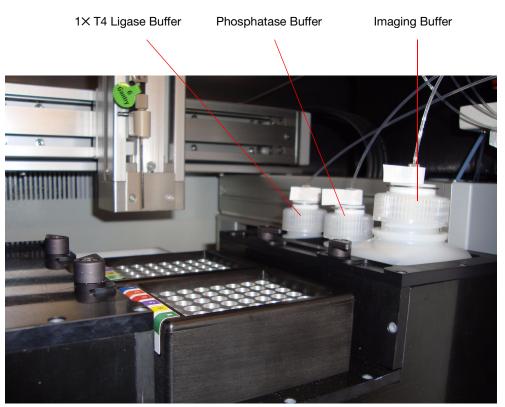


Figure 16 Positions of buffer bottles in the chiller block.

Check the waste level

CAUTION! POTENTIAL SLIPPING HAZARD. Opening the door to the computer rack requires moving the side cart. To move the side cart, the tubing must be detached from the waste container. This may cause a spill. The spill can create a potential slipping hazard. If the waste container contents are spilled, clean up immediately.

- **1.** Check the level of waste in the 10-L carboy.
- **2.** If the carboy is more than ¹/₄ full, properly dispose of the waste according to your institution's environmental health and safety guidelines.

Prime Instrument and Storage Buffer lines

- IMPORTANT! The priming of the lines must be performed prior to each run whether the Instrument and/or Storage Buffers were changed or not.
- 1. Under the System Status menu, click Prime (see Figure 17).

File Tools Wizards Wit	ndow Mock Help				
Welcome: lab_user	Flow Cell 1		Flow Cell 2		
SOLID	Run Name:		Run Name:		
	Created by:	0	Created by:	0	
	📲 Assign Run 📷 Edit Run 🥒 Clear 📑 Run Logs	📕 Heat Map	🔲 Assign Run 📗 Edit Run 🥔 Clear 🛄 Run Logs 🚦 He	eat Map	
📑 Setup	Sample Slide		Sample Slide		
🔨 Create Runs	Show Samples >>		Show Samples >>		
🎬 Manage Runs					
🗖 Run					
Flow Cell Details					
FIN HOW CEIL Decails					
Tycle Scan					
Flow Cell 1					
Flow Cell 2					
	·				
•	Protocol		Protocol		
System Status 🛛 🕐					
Prime Buffer Line:					
Prime	L		L		
Chiller: 4.1 C	fluidic completed.		fluidic completed.		
Cooling 💙	Fludic	Imaging	Fludes	Imaging	
Lamp: 200 hrs 🛛 👷	No Run Defined	Run Control	No Run Defined	Run Control	
Reset					
Door: Closed-Locked	Start Run	Load Flowcell	🕨 Start Run	Load Flowcell	
Unlock Doors		Clear Howcell		Clear Flowcell	
Imaging is Online	Fluidics is Online			72M of 297M	

Figure 17 Click **Prime** to prime the instrument and storage buffer lines.

reagents

During priming, open the middle front door of the SOLiD[™] 3 Plus Analyzer to check that the syringe is filled with buffer when the plunger is at the aspiration stage (see Figure 18). Confirm that the buffer lines are filled with buffer. If the syringe is not filled with buffer even at the last stroke, click **Prime** again.

Figure 18 Syringe on the SOLiD[™] 3 Plus Analyzer.

Install the slide(s) on the instrument

Prepare the slide	IMPORTANT! Before removing the slide from the SOLiD [™] Deposition Chamber, ensure that either the instrument flowcell is ready or a SOLiD [™] Slide Storage Chamber is available.
	1. Remove the 3-mm adhesive disks.
	 Pour enough Deposition Buffer to cover the top of the SOLiD[™] Deposition Chamber (1.5 mL in each port for the 1-well SOLiD[™] Deposition Chamber and 6 mL for the 4-well and 8-well SOLiD[™] Deposition Chambers).
	3. Using an appropriate pipettor and pipette tip, press down the plunger button, then place the tip into one of the portholes of the well. Slowly release the pipettor plunger button, then aspirate the Deposition Buffer. Fresh Deposition Buffer is drawn into the well to replace the old Deposition Buffer, and aspiration removes unattached beads. Repeat this procedure for the other wells.
	 Gently loosen the SOLiD[™] Deposition Chamber screws. As the screws are loosened, more fresh Deposition Buffer is drawn into the Deposition Chamber.
	5. Open the SOLiD TM Deposition Chamber lid, then carefully remove the SOLiD TM

- 5. Open the SOLiD[™] Deposition Chamber lid, then carefully remove the SOLiD[™] Opti Slide Carrier assembly from the Deposition Chamber.
- **6.** Immediately pour the minimum amount of Overlay Buffer needed to completely cover the bead spots on the slide. Pouring Overlay Buffer onto the bead spots prevents the slide from drying out during subsequent handling.
- 7. Immediately place the SOLiD[™] Opti Slide Carrier assembly onto the instrument or into the SOLiD[™] Slide Storage Chamber.

STOPPING POINT. If you are storing the slide, place the SOLiDTM Opti Slide Carrier assembly into the SOLiDTM Slide Storage Chamber, then fill with 5 mL Slide Storage Buffer. Store the slide at 4 °C until the slide is ready for use (see Figure 19).

Figure 19 SOLiD[™] Slide Storage Chamber.

- Install the slide IMPORTANT! Before removing a slide from a previous run, ensure that the run, images, and data collected from the previous run are satisfactory. For more information, refer to the *Applied Biosystems SOLiD*[™] SETS Software v3.5 Getting Started Guide (PN 4444007).
 - Check to see if a SOLiD[™] Opti Slide Carrier assembly from a previous run is present in the flowcell chamber. If a SOLiD[™] Opti Slide Carrier assembly *is* present in the flowcell chamber, proceed with steps 2 to 4. If a SOLiD[™] Opti Slide Carrier assembly is *not* present in the flowcell chamber, skip to step 5.
 - **2.** For each flowcell to be used, click the **Clear Flowcell** button at the bottom of the flowcell panel (see Figure 20).

File Tools Wizards Wi	ndow Mock Help				
Welcome: lab_user	Flow Cell 1		Flow Cell 2		
SOLID			D Minera		
	Run Name:	0	Run Name:		0
	Created by:		Created by:		
	📲 Assign Run 📑 Edit Run 🥒 Clear 📑 Run Logs	Heat Map	📲 Assign Run 📗 Edit Ru	n 🥒 Clear 🛄 Run Logs	🛛 Heat Map
🔽 Setup	Sample Slide		Sample Slide		
	Show Samples >>		Show Samples >>		
Create Runs	Show Samples >>				
🚰 Manage Runs					
📑 Run					
Flow Cell Details					
Cycle Scan					
Flow Cell 1					
Flow Cell 2					
G	Protocol	1	Protocol		
•	Control 2 Australia Inte				
System Status 🛛 🔞					
Prime Buffer Line:					
Prime			·		
Chiller: 4.1 C			a second and a second second		
	fluidic completed.		fluidic completed.		
Cooling 🚩	Fude	Imaging	Flu	dire	Imaging
Lamp: 200 hrs On 🢡			L	fall team	
Reset	No Run Defined	Run Control	No Run Defined		Run Control
		Lood Flowcell	1		Deal Flowcell
Door: Closed-Locked 🔄	Start Run	Clear Flowcell	Start Run		Clear Flowcell
Collected Deves					
👩 Unlock Doors					
Imaging is Online	Fluidics is Online				72M of 297M

Figure 20 Click Clear Flowcell to flush the contents from the flowcell.

3. After clearing each flowcell, open the appropriate flowcell chamber.

- 2
- 4. Remove the SOLiD[™] Opti Slide Carrier assembly from the previous run. If the slide will be reused, place the SOLiD[™] Opti Slide Carrier assembly into a SOLiD[™] Slide Storage Chamber, then fill the chamber with Slide Storage Buffer. Store the SOLiD[™] Slide Storage Chamber at 4 °C.

WARNING! PHYSICAL INJURY HAZARD. Hot Surface. Surface of flowcell may be hot. Use care when working around the flowcell to avoid being burned.

- 5. Clean the flowcell block with 70% ethanol and Kimwipes[®] to remove residue.
- 6. Inspect the O-ring and reseat it if necessary (see Figure 21; for details, see "Install the SOLiD[™] flowcell O-ring" on page 99). Check the O-ring for cuts and abrasions. If any abnormalities are observed, replace it. Inspect the O-ring grooves for debris or contamination and clean with water as needed.

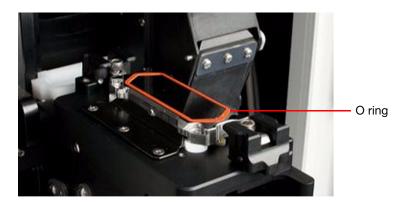


Figure 21 O-ring installed on flowcell.

- **7.** Ensure that the instrument and storage buffer lines are primed before loading a slide, or the slide will dry out.
- 8. Insert the SOLiD[™] Opti Slide Carrier onto the instrument. Work quickly to prevent the slide from drying out.
 - a. Remove the SOLiD[™] Opti Slide Carrier assembly from the SOLiD[™] Deposition Chamber or from the SOLiD[™] Slide Storage Chamber.

WARNING! PHYSICAL INJURY HAZARD. Hot Surface. Surface of flowcell may be hot. Use care when working around the flowcell to avoid being burned.

b. Place the SOLiD[™] Opti Slide Carrier assembly into the open flowcell, engaging the alignment key on the carrier with the corresponding part on the flowcell.

- c. Slide the two SOLiD[™] Opti Slide Carrier lock-down tabs on the flowcell inward until they are positioned over and flush with the carrier (see Figure 22).
 - IMPORTANT! Ensure that the tabs are flush with the carrier. If necessary, loosen the Allen screws further, then slide the tabs over the SOLiD[™] Opti Slide Carrier.
- **d.** To properly seat the carrier on the flowcell, gradually tighten the 2 Allen screws on both lock-down tabs in an alternating fashion to 20 inch-pounds.
- e. Rotate the flowcell up and lock it into the scan position.

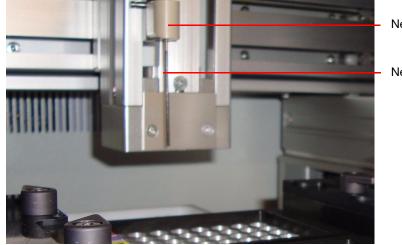
Opti Slide Carrier lock-down tab

Opti Slide Carrier lock-down tab

Figure 22 SOLiD[™] Opti Slide Carrier lockdown tabs.

- **9.** Close the instrument doors.
- **10.** Click the **Load Flowcells** button located at the bottom of the flowcell panel. Each flowcell has its own Load Flowcells button (see Figure 23 on page 29).

				💶 🗗 🔼
	indow Mock Help			
Welcome: lab_user	F	ow Cell 1	Fic	ow Cell 2
SOLID	Run Name:		Run Name:	
	Created by:	0	Created by:	0
	📲 Assign Run 📑 Edit Run 🥒 Clear 📑 Run Log	Heat Map	📲 Assign Run 📷 Edit Run 🥒 Clear 🔠 Run Logs	Heat Map
🙀 Setup	Sample Slide		Sample Slide	1
	Show Samples >>		Show Samples >>	
Create Runs				
🤗 Manage Runs				
📑 Run				
Flow Cell Details				
Cycle Scan				
Flow Cell 1				
Flow Cell 2				
•	Protocol		Protocol	
System Status 🛛 🔞				
Prime Buffer Line:				
Prime				
Chiller: 4.1 C	fluidic completed.		fluidic completed.	
Cooling 🔽	Fudio	Imaging	Fludics	Imaging
Lamp: 200 hrs On 🢡	No Run Defined	🗢 Run Control 📄	No Run Defined	🗢 Run Control 📗
Reset		Load Flowcell		Load Flowcell
Door: Closed-Locked	Start Run		Start Run	
		Clear Flowcell		Clear Flowcell
🐻 Unlock Doors				
Transfer to Online	Platest orbe		L	and the second se
Imaging is Online	Fluidics is Online			72M of 297M 👕


Figure 23 Click Load Flowcells to load the flowcell with buffer.

- **11.** Click **Yes** to start loading the flowcell.
 - () **IMPORTANT!** The flowcell should be loaded within 1 to 2 minutes of slide installation. Slides should be installed one at a time, with flowcells loaded before installing a second slide.
- **12.** Check for leaks to ensure that the slide does not dry out.
- 13. If only one flowcell will be used, ensure that unused flowcell SOLiD[™] Opti Slide Carrier lock-down tabs are pushed all the way in and tightened before closing the unused flowcell.

Install reagent strip(s)

 Clean the needle and bottom of the needle holder with a Kimwipe[®] (see Figure 24). If needed, first moisten the Kimwipe with deionized water or use a pre-moistened alcohol pad.

Needle holder

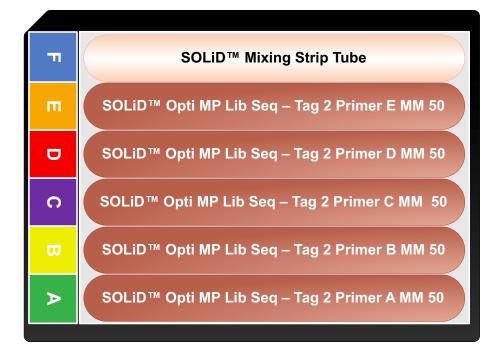
Needle

Figure 24 Needle and needle holder.

- 2. Thaw the appropriate reagent strip(s) on ice.
- **3.** Place the reagent strip(s) in an ABgene[®] 96-well square-well storage plate and centrifuge at 160 × g for 2 minutes. For reagents needed for a WFA or sequencing run, see Figure 25 on page 31 to Figure 32 on page 34. For information about contents of reagent tubes, see "Reagent strip layouts" on page 120.
 - IMPORTANT! For barcoded fragment libraries of short insert sizes such as small RNA samples or SAGE[™] tags, consult your Field Applications Specialist on the recommended reagents for sequencing the target read on barcoded samples, which is different from the SOLiD[™] Fragment Library Sequencing Master Mix 50.

Figure 25 Reagent strip block layout for WFA.

Figure 26 Reagent strip block layout to sequence fragment (50 bp).

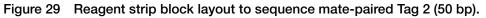

Figure 27 Reagent strip block layout to sequence fragment (35 bp).

Figure 28 Reagent strip block layout to sequence mate-paired Tag 1 (50 bp).

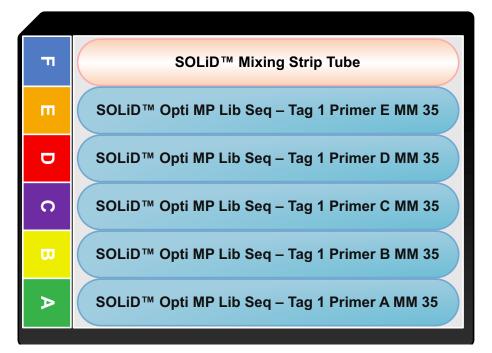


Figure 30 Reagent strip block layout to sequence mate-paired tag 1 (35 bp).

Figure 31 Reagent strip block layout to sequence mate-paired tag 2 (35 bp).

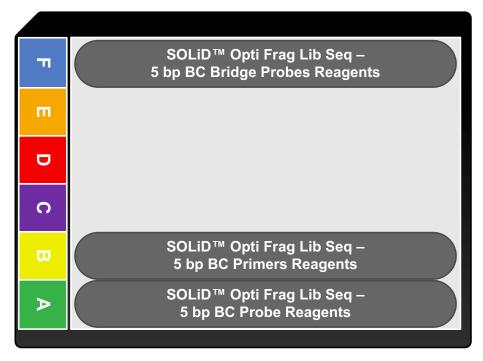


Figure 32 Reagent strip block layout to sequence barcode (5 bp).

4. Verify that the reagent strip blocks are oriented and seated properly in the chiller block. The block must engage the orientation key to fit properly. The orientation key (cut corner) is in the upper-left position when the block is placed on the instrument (see Figure 33 on page 35).

Chapter 2 Prepare and install slides and reagents

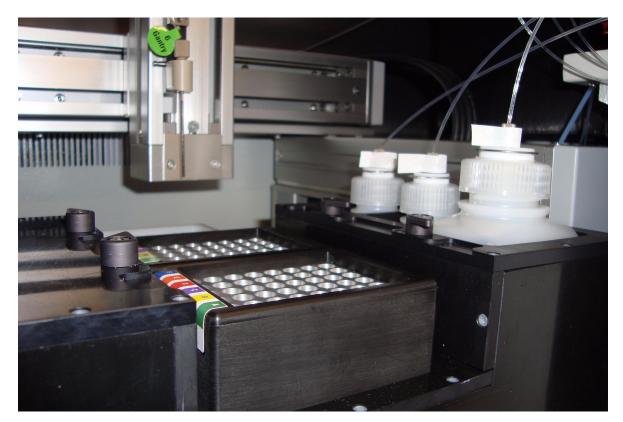


Figure 33 The Reagent Strip Block.

- IMPORTANT! Ensure that the chiller block temperature is below 10 °C before proceeding with reagent strip installation. Under the System Status menu, select **Cooling** from the Chiller drop-down menu (Figure 13 on page 20).
- **5.** When the temperature is less than 10 °C, place the reagents in the appropriate location in the chiller block (see Table 5 and Figure 34 on page 36).

If using flowcell	Then place the strip tube(s) in the
1	Front block
2	Rear block

Table 5 Where to place the strip tube

Figure 34 Position of the sequencing reagent blocks for flowcells 1 and 2.

- **6.** Place the cover over the reagent strips and secure them using the cover fasteners (see Figure 35).
 - **Note:** Ensure that the top and bottom of the cover is free of splattered wet or dry reagents (see "Clean the reagent strip cover" on page 100).

Cover fastener

Cover fastener

Figure 35 Securely fastened reagent strip covers.

Set Up, Control, and Monitor the Run

This chapter covers:

Section 3.1	Set up and perform a workflow analysis (WFA) run	39
Material	s and equipment required	39
Workflow	N	39
Create a	WFA run record	40
Detect th	e focus range	44
Start the	WFA run	46
Monitor	the WFA run	48
View the	WFA report	49
Section 3.2	Set up and perform a sequencing run	51
Material	s and equipment required	51
Workflow	N	51
Create a	sequencing (standard) run record	52
Create a	multiplex sequencing run record	56
Detect th	e focus range	61
Start the	sequencing run	63
Control t	he run	66
Monitor	the sequencing run	71

Chapter 3 Set Up, Control, and Monitor

the Run

Section 3.1 Set up and perform a workflow analysis (WFA) run

Materials and equipment required

See Appendix A on page 77 for a list of equipment, kits, and consumables necessary to set up a workflow analysis (WFA) run.

Prepare slide(s) and install reagents (Chapter 2) Create a WFA run record Detect the focus range Start the WFA run Monitor the run View the Run Log View the Heat Maps View Cycle Scans View Cycle Scans View Cycle Scans Determine optimal titration point Determine optimal titration point Determine bead deposition density for a sequencing run

Create a WFA run record is created using the SOLiD[™] Instrument Control Software (ICS).
 Detect the focus range Two methods exist for determining the focus range: automatic and manual. Users should first attempt automatic range detection. If automatic detection fails, use the manual mode.
 Start the WFA run Start the run by using the SOLiD[™] Instrument Control Software. Before starting a run, you may need to remove previous data may need to ensure maximum disk space for new results.

Workflow

Monitor the run While executing a WFA run, the instrument performs a Prescan. In a Prescan, all of the beads are labeled and their positions on the slide are recorded to derive a focal map and then they undergo a single ligation cycle. The run can be monitored through the ICS or the SETS browser by using the Run Log, Heat Map, and Cycle Scans.

Each flowcell generates a separate Run Log that records high-level events, such as fluidic modules and slide scanning. The start and stop times of these events, as well as any pauses or errors during the run, are also recorded. The Run Log is particularly useful in helping you anticipate and schedule reagent refills or troubleshoot instrument errors.

Heat maps are generated from the analysis of the focal map images and analysis of each ligation cycle. A heat map is a colorized display of a particular metric (*bead count, bead signal*, or *image signal*) across all the panels for a run (for definitions of the metrics, see the "Glossary" on page 169).

For each flowcell, the corresponding Cycle Scans window provides nearly real-time feedback on initial data quality on a per-cycle basis.

View the WFA report You can view a WFA report in the SOLiD[™] Experiment Tracking System (SETS) after the run is complete. Three important metrics are generated in the WFA report: *P2#/P1# ratio*, *On-Axis beads*, and *Titration Metric*. These metrics guide the selection of the best-performing bead population based on different titration points used in ePCR (for definitions of the metrics, see the "Glossary" on page 169). In general, the closer the image data points are on-axis, the higher the quality of data obtained due to good bead deposition and chemistry.

From the WFA data, you can also estimate the bead deposition density to be used when preparing a slide for sequencing. Differences between bead concentration measured on the NanoDrop[™] ND-1000 Spectrophotometer and the concentration actually detected by the bead counting algorithm on the instrument may occur. In order to maximize throughput in a SOLiD[™] sequencing run, a bead density of 220,000 P2-positive beads per panel is recommended.

Create a WFA run record

There are two ways to create a WFA run. The first method is to use the Run wizard (see below). The second method is to import a .txt file that contains the run definition (see "Set up a run by importing a Run Definition file" on page 102). Importing a .txt file saves time re-entering information of a repeated run. The .txt file can be generated on an off-instrument computer.

1. Click **Create Runs** in the Setup task pane on the left menu pane of the ICS (see Figure 36 on page 41).

🔼 solid0054 - SOLID -	3.5 - User: lab_user
File Tools Wizards W	indow Help
Welcome: lab_user SOLID	Flow (Run Name: Created by: Assign Run Preside Clear Run Logs
Create Runs Manage Runs Run Flow Cell Details	Hide Samples <<

Figure 36 Use the run wizard to create a WFA run.

- **2.** Complete the information in the Select Run Type and Mask pane (see Figure 37 on page 42):
 - a. Select the WFA option.
 - **b.** (Optional) Type a new run name.
 - **c.** (Optional) Enter a description.
 - d. Ensure that the mask 4_spot_WFA_mask_sf is selected.
 - e. Click Next.


SOLID - 3.5 - User: lab_user	
ards Window Help user SOLID SETUP > Create/Edit Run > Select Run Type and Mask	(
The following pages will guide you through to set up a run. Required fields are noted with an asterisk (*).	
IN *Select type of run to create IN Sequencing ③ WFA Multiplexing	
se and Identify the run and enter a description	
*Run Name: solid0054_20090827_WFA_3P8215_217 Description:	
Assign a Primer Set and # of bases. Primers run in sequential order *Select Run Protocol: SOLID Opti WFA Sequencing for Workflow Analysis. Primer Set 1: F3 I Bases	
*Select mask to use: 4_spot_WFA_mask_sf v	

Figure 37 Complete the information in the Select Run Type and Mask pane.

- **3.** Complete the information in the Specify Samples and Analysis pane (see Figure 38 on page 43):
 - **a.** Assign samples to spots.
 - b. Click Finish.

lid0054 - SOLID -	3.5 - User: lab_user				
Tools Wizards Wi	indow Help				
ome: lab_user	SETUP > Create/Edit Ru	n > Specify Samples and Anal	vsis		
	Select how many samples you need for this run. For Application and Secondary Analysis columns in a sequencing or multiplexing run, you can click the column header and use ctrl+D for column fill down which will copy the value on the first row to the remaining rows.				
	*How many samples will you need				
ite New Run					
Select Run Type and Mask	Sample Name	Primary Analysis	Secondary Analysis	Description	Remove
ipecify Samples	wfaSample_1_JPB215	default primary	none		×
nd Analysis	wfaSample_2_JPB216	default primary	none		×
	wfaSample_3_JPB217	default primary	none		×
		M BOTOLOGIC LONGE LAND	a na hanana za amana		
	To assign samples to spots, select	a sample in the list and then click on spots		oot_WFA_mask_sfSpots - wifaSample_1_JPB215	
		a sample in the list and then click on spots		sot_WFA_mask_sf Spots - wfaSample_1_JPB215	(Spot Number: 4)
	Sample 1. wfaSample_1_JPB215 2. wfaSample_2_JPB216	a sample in the list and then click on spots			Spot Number: 4

- 4. Choose either to assign a run to a flowcell for immediate use or to store the run in the instrument database for later use, then click **OK**.
- **5.** To assign a run previously saved to the database:
 - a. Click on Manage Runs in the task pane.
 - b. Click the run, then select Assign to Flowcell.
 - c. Choose a flowcell, then click OK.
- **6.** (Optional) Repeat the above steps for the other flowcell if performing a WFA run on a second slide.

Detect the focus range

- **Note:** If automatic focus range detection fails, determine the focus range manually (see "Manually find the focus range" on page 103).
- 1. Close the front doors of the SOLiD[™] 3 Plus Analyzer. Open the Imager window by choosing Windows → Imaging System.
- **2.** Select Tools > Detect Focusing Range.
- **3.** In the focusing range dialog, specify the stage template file by entering the name directly or by clicking the **Browse** button to navigate to a suitable one (see Figure 39). The stage template must match the slide in the target flowcell(s). If you created a run from the ICS, then select the file **imagingMap.STG** from the subdirectory in C:\Runs whose name matches the name of the run (for example, select C:\Runs\Solid0327_20081209_2_Oct_Test\imagingMap.STG).

🚰 Detect Focusing Range	
Select Stage Template	
[Browse
Please select flowcell: 2 💌	
Go Cancel	
IDLE	

Figure 39 Detect Focusing Range dialog.

4. Select the flowcell using the drop-down menu, then press **Go**. The Imager works for several minutes while it determines the range. The blue progress bar indicates how close it is to completion (see Figure 40). You can also click **Cancel** so that the Imager aborts the ranging operation.

Totect Focusing Range	
Select Stage Template	
C:/Runs/solid0327_20081204_1x15_S3Quad_1/imagingMap.STG	▼ Browse
Please select flowcell: 📔 💌	
Go Cancel	
Searching focusing range at (-22218, -24504)	

Figure 40 Detect Focusing Range Dialog while detection in progress.

5. When the Imager is done, a dialog appears (see Figure 41 on page 45). Click **Yes** if you want to replace the values in the local settings file. Click **No** if you want the Imager to discard the newly calculated focus range.

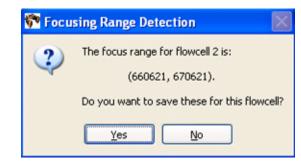


Figure 41 Confirm that you want to replace the local settings file.

- **6.** Verify the validity of the newly calculated focus range by taking images at random locations.
 - IMPORTANT! You should see images of beads, ensuring that the algorithm was able to focus on the beads and not on other artifacts (see Figure 42). If you do not see bead images or if you see out-of-focus bead images, set the focus range manually (see "Manually find the focus range" on page 103).

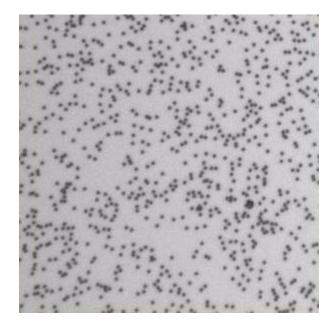


Figure 42 Beads in focus.

Start the WFA run

- 1. Click Start Run.
- **2.** If there is not enough room to store the data, the Start Run dialog appears (see Figure 43). Choose the appropriate option (see Table 6).

Figure 43 This Start Run dialog appears if there is not enough room to store data for the run.

Table 6 Options for managing disk space

Option	Description
Start Anyway	Initiates the run. The instrument pauses itself when it runs out of free disk space.
Delete Images [‡]	Launches Historical Runs page in SETS. Images and/or results can be deleted through SETS
Cancel	Aborts the run.

‡ For more information on creating more available disk space, see the Applied Biosystems SOLiD[™] SETS Software v3.5 Getting Started Guide (PN 4444007).

- IMPORTANT! Before deleting any images, ensure that data analysis from the previous run is satisfactory and complete. For more information, refer to the Applied Biosystems SOLiD[™] SETS Software v3.5 Getting Started Guide (PN 4444007).
- **3.** After the run has been initiated, you can click the **Run Log**, **Cycle Scans**, and **Heat Map** buttons located at the top of the appropriate flowcell panel to learn more information about the current run (see Figure 44 on page 47).

ab_user	Flow Cell 1 Com;	plete		Flow Cell 2 Complete	•
Run Name: solid0419_20090904_W Created by: lab_user	FA FC1 DH15	0	Run Name: solid0419_20090904_WF Created by: lab_user	A FC2 DH16	
📲 Assign Run 📝 Edit Run 🧷 Oker	🕼 Run Logs 🔋 Heat Map		📲 Assign Run 🔗 Edit Run 🧷 Oper	🕞 Run Logs 🚦 Heat Map	and the second
Sample Slide			Sample Slide		
Show Samples >>	3 Samples -in- 4_spot_WF/	A_mask_sf	Show Samples >>	3 Samples -in- 4_spot_WFA_mar	sk_st
	· · · · ·				
	[:::]				
	aaa			A A A A	
Protocol			Protocol		
SOLID Opti WFA	F3	1 bases	SOLID Opti WFA	F3	1 bases
Pre-Scan			Pre-Scan		
F3			F3		
0					
ie:					
c l					
Fuides		Imaging	Fluides	Im	aging
On 💡 Run Completed		▼ Run Control	Run Completed		▼ Run Control
		Load Flowcell		508 - 1.2M	Load Flowcell
	Complete	Clear Flowcell	Start Run	Complete	Clear Flowcel
M 🕎					
ded 🔜 🕨 Start Run					

Figure 44 How to learn more about the current run.

IMPORTANT! Do not disturb the SOLiD[™] 3 Plus Analyzer while in operation and do not open the flowcell during a pause in the run. Significant perturbations (for example, opening system parts, vibrations) during the run is detrimental to the results.

Monitor the WFA run

- Note: To monitor the run remotely, use SETS from any computer to connect to the networked instrument [refer to the *Applied Biosystems SOLiD*[™] SETS Software v3.5 Getting Started Guide (PN 4444007)]. If desired, set up e-mail notification regarding the instrument run and system information using SETS (refer to the Applied Biosystems SOLiD[™] SETS Software v3.5 Getting Started Guide).
- View the run log 1. Click **Run Log** located at the top right corner of the flowcell panel. A dialog box opens, describing a series of instrument events.
 - **2.** After you finish viewing the Run Log, click **Close**, located at the bottom of the Run Log window.
- View heat maps1. To view the heat map showing bead densities found in the focal map images, click Heat Map located at the top right-hand corner of the flowcell panel (see Figure 44 on page 47).
 - **2.** Look for:
 - Uniform deposition of beads on the slide.
 - The actual average bead deposition density/panel value being similar in value to the targeted average bead deposition density/panel of 25,000 beads/panel for WFA run. A large number of missing panels could indicate a deposition problem.
 - Note: The heat map may not immediately be available after the completion of the Prescan. The software must process all the images collected during the Prescan before the heat map is available. This process may take up to 30 minutes, depending on the number of panels imaged.
 - **3.** After you finish viewing the Heat Map, click **Close** located at the bottom of the Heat Map window.
- View cycle scans 1. Select the appropriate flowcell (Flow Cell 1 or Flow Cell 2) in the Cycle Scan menu on the task bar on the left.
 - **Note:** Details regarding which parameters to monitor are described in the sequencing run section (see "Monitor the sequencing run" on page 71).
 - **2.** Click the heat map link to view the heat map for that cycle (see Figure 68 on page 74).

- З
- **3.** Left-click any square panel on the heat map to open the panel browser window. The panel browser allows you to view the focal map and the image for each fluorescent dye signal (see Figure 69 on page 75).
- 4. After you finish viewing the Cycle Scans, close the Cycle Scans window.
 - Note: If the WFA run appears problematic, you can: (1) Allow the run to continue and troubleshoot after the run or (2) pause the run and troubleshoot. Consult an Applied Biosystems SOLiD[™] Field Applications Specialist.

View the WFA report

Generate the WFA report

The WFA report is automatically generated and available in SETS when the WFA run finishes (see Figure 45). Refer to the *Applied Biosystems SOLiD*TM SETS Software v3.5 Getting Started Guide (PN 4444007).

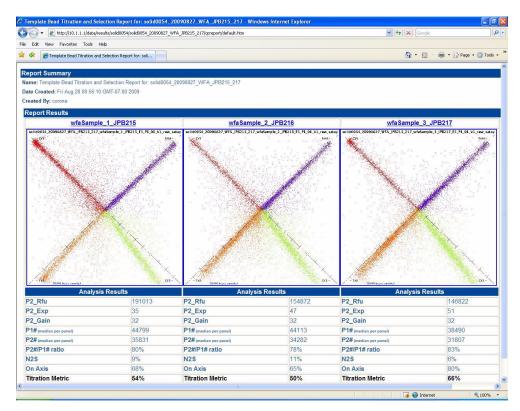


Figure 45 One WFA report for a single 4-well slide displayed in SETS.

Determine the optimal titration point

Determine which titration has the highest titration metric. This titration is the optimal titration point.

Determine the bead deposition density for a sequencing run

1. Calculate the concentration of P2-positive beads using the formula below, where X is the volume of templated beads used for the WFA sample (equivalent to 15 million beads) and P2# is given by the WFA report:

$$X \mu L = \frac{15 \times 10^6 \text{ beads}}{\# \text{ beads/}\mu L (according to NanoDrop™)}$$

 $Y P2$ -positive beads/ $\mu L = \frac{P2\# \text{ beads/panel} \times 426 \text{ panels}}{X \mu L}$

Example:

For a sample with a concentration of 500,000 beads/µL measured by NanoDrop[™] ND-1000, where the WFA report indicates a P2# value of 20,000 beads/panel.

 $\boldsymbol{X} \mu L = \frac{15 \times 10^{6} \text{ beads}}{500,000 \text{ beads/}\mu L} = 30 \ \mu L$ $\boldsymbol{Y} P2\text{-positive beads/}\mu L = \frac{20,000 \text{ beads/panel} \times 426 \text{ panels}}{30 \ \mu L}$

- Use the calculated concentration in place of the value determined by the NanoDrop[™] ND-1000 Spectrophotometer for more accurate deposition densities when preparing slides for sequencing. It is recommended you use this resulting calculated bead concentration to determine the volume of beads for deposition.
- **3.** Then, multiply that volume by 120% to calculate the volume of beads for deposition.
 - **Note:** The 20% overage has been estimated empirically and is attributable to bead loss during washing and bead deposition steps. The overage factor may be adjusted by individual operators based on their experiences.

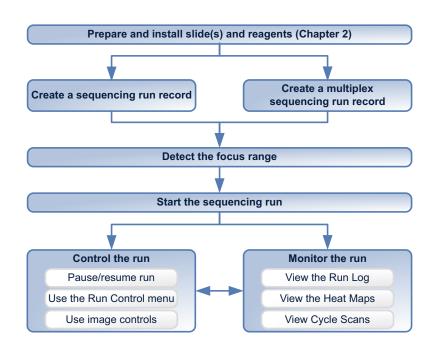
Desired # P2-positive beads to be deposited Z μL bead solution =

Example:

For a sample with a concentration of 284,000 P2-positive beads/µL to be deposited in one well of an 8-well SOLiD[™] Deposition Chamber at a density of 220,000 beads/panel.

 $Z \mu L$ bead solution = $\frac{41 \text{ million P2-positive beads}}{284,000 \text{ P2-positive beads/} \mu L} \times 120\%$

= 173 µL bead solution



Section 3.2 Set up and perform a sequencing run

Materials and equipment required

See Appendix A on page 77 for a list of equipment, kits, and consumables necessary to set up a sequencing run.

Workflow

A sequencing (standard) run record is created using the SOLiD[™] Instrument Control Create a sequencing Software (ICS). Primary Analysis Settings and Secondary Analysis Settings should be (standard) run created prior to creating a sequencing run record using SETS [refer to the Applied record Biosvstems SOLiD[™] SETS Software v3.5 Getting Started Guide (PN 4444007)]. A multiplex sequencing run record is created using the SOLiDTM Instrument Control Create a multiplex sequencing run Software (ICS). At this step, barcodes are matched to libraries. Primary Analysis record Settings and Secondary Analysis Settings should be created prior to creating a sequencing run record using SETS [refer to the Applied Biosystems SOLiD[™] SETS Software v3.5 Getting Started Guide (PN 4444007)]. Detect the focus Two methods exist for determining the focus range: automatic and manual. Users range should first attempt automatic range detection. If automatic detection fails, use the manual mode.

Start the sequencing run	The run is started using the SOLiD [™] Instrument Control Software. Before starting a run, previous data should be removed to ensure maximum disk space for new results. The instrument is limited to run 5 primers per flowcell. If you are sequencing mate pairs or barcoded fragments, the instrument automatically pauses and stays paused until the reagents are replaced and the run is resumed.
Control the run	You can control how the SOLiD TM 3 Plus System collects sequencing data with the SOLiD TM Instrument Control Software (ICS). With the ICS, you can repeat a primer to improve the real-time primary analysis results or set an early pause point to change reagents on your schedule. You can choose to turn off imaging of specific samples to collect only the best sequencing data.
	To control the ICS, use the Run Control drop-down menu. Use the Run Control menu only if you understand clearly the series of fluidic and imaging steps in a run. Skipping or repeating certain steps could lead to errors in the resulting data. For example, with the ICS menus, you can repeat a ligation; however, you must first cleave the fluorescent label from the ligation product.
Monitor the run	While executing a sequencing run, the instrument performs a Prescan. In a Prescan, all of the beads are labeled and their positions on the slide are recorded to derive a focal map followed by a single ligation cycle. The run can be monitored using the Run Log, Heat Map, and Cycle Scans through the Instrument Control Software (ICS) or from the SETS browser.
	Each flowcell generates a separate Run Log that records high-level events, such as fluidic modules and slide scanning. The start and stop times of these events and any pauses or errors that occur during the run, are also recorded. The Run Log is particularly useful in helping you anticipate and schedule reagent refills or troubleshoot instrument errors.
	Heat maps are generated from the analysis of the focal map images and analysis of each ligation cycle. A heat map is a colorized display of a particular metric (<i>bead count, bead signal</i> , or <i>image signal</i>) across all the panels for a run (for definitions of the metrics, see the "Glossary" on page 169).

For each flowcell, the corresponding Cycle Scans window provides nearly real-time feedback on initial data quality on a per-cycle basis.

Create a sequencing (standard) run record

Note: For instructions to set up a multiplex sequencing run record, go to the next section "Create a multiplex sequencing run record" on page 56.

There are two ways to create a sequencing run. The first method is to use the Run wizard (see below). The second method is to import a .txt file that contains the run definition (see "Set up a run by importing a Run Definition file" on page 102). It saves time re-entering information of a repeated run. This file can be generated on an off-instrument computer.

- 3
- 1. Click **Create Runs** in the Setup task pane on the left menu pane of the ICS (see Figure 46).

				🗖 🗗 🗌
	ndow Mock Help			
Welcome: lab_user	Flo	w Cell 1	F	low Cell 2
	Run Name:	0	Run Name:	0
	Created by:		Created by:	
	📲 Assign Run 🎆 Edit Run 🥔 Clear 🔤 Run Logs 🛛	📕 Heat Map	📲 Assign Run 📷 Edit Run 🥒 Clear 🛛 💷 Run Log	is 📕 Heat Map
📑 Setup	Sample Slide		Sample Slide]
< Create Runs	Show Samples >>		Show Samples >>	
🍋 Manage Runs				
Run				
Flow Cell Details				
Cycle Scan				
Flow Cell 1				
Flow Cell 2				
•	Protocol		Protocol	
System Status 🛛 🔞				
Prime Buffer Line:				
Prime				
Chiller: 4.1 C				
Cooling V	fluidic completed.		fluidic completed.	
·	Fluidies	Imaging	Fludics	Imaging
Lamp: 200 hrs On 🂡	No Run Defined	🖉 🔫 Run Control 📄	No Run Defined	🔍 Run Control 📄
Reset		Load Flowcell		Load Flowcell
Door: Closed-Locked 🌆	Start Run	Clear Flowcell	Start Run	Clear Flowcell
🐻 Unlock Doors				
Imaging is Online	Fluidics is Online			72M of 297M

Figure 46 Use the run wizard to create a sequencing run.

- **2.** Complete the information in the Select Run Type and Mask pane (see Figure 47 on page 54):
 - a. Select the Sequencing option.
 - **b.** (Optional) Type a new run name.
 - **c.** (Optional) Enter a description.
 - d. Ensure that the Run Protocol is set to SOLiD Opti.
 - e. Select Primer Set 1 and Primer Set 2.
 - If sequencing a fragment library, leave F3 as Primer Set 1.

- If sequencing a mate-paired library, select **R3** as Primer Set 1 and **F3** for Primer Set 2.
 - () **IMPORTANT!** R3 tag must be run *first* in a mate-paired sequencing run. The reagent strips for the F3 tag do not contain Focal Map reagents.
- f. Enter read lengths for Primer Set 1, and if used, 2. A typical read length is 35 to 50 bases.
- g. Select the appropriate mask to use.
- h. Click Next.
 - **Note:** If a message window appears during these steps, then continue setting up run as indicated. If a message remains after all selections have been made, correct the entries before clicking **Next**.

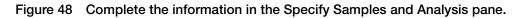

🔼 solid0327 - SOLID - 3	.5 - User: lab_user					
File Tools Wizards Wine	dow Help					
Welcome: lab_user SOLID	SETUP > Create/E	dit Run > Select Run Type and	Mask			
	The following pages w	will guide you through to set up a run. R	equired fields are noted with a	n asterisk (*).		
Create New Run	*Select type of run to cre	eate				
1. Select Run Type and Mask	 Sequencing 	WFA Multiplexing				
2. Specify Samples and Analysis	Identify the run and ente	er a description				
2000 A 100	*Run Name: solid03	327_20090819_2				
	Description:					
	Assign a Primer Set and #	# of bases. Primers run in sequential order				
	*Select Run Protocol:		 Sequencing with 5 primer walk 	away.		
	Primer Set 1:		*			
	Primer Set 2:	<select primer="" set=""> 💟</select>	~			
	*Select mask to use:	1_spot_mask_sf V Preview			20 cd Markh	
Imaging is Online F	luidics is Online				 < Back Next > Finish	Cancel
Inaging is Online F	Ididics is Offinite				1421	1 4 2 3 / 19

Figure 47 Complete the information in the Select Run Type and Mask pane.

3. Complete the information in the Specify Samples and Analysis pane (see Figure 48 on page 55):

- З
- **a.** Select the number of samples that will be used in the run. If a single sample will be run in multiple spots of the same slide, it counts as only one sample. Otherwise, the number of samples typically matches the number of spots on the mask.
- **b.** (Optional) Edit the Sample Name, Library, Analysis settings, and Description.

SETUP > Create/Edi	t Run > Specify Sar	nples and Analysis					
SOLID	es you need for this run.	For Application and Sec		mns in a sequencing o	r multiplexir	ng run, you can click the column hea	der and use ctrl+D for columr
Run *How many samples will you	need for your mask? 1	~					
In Type Sample Name	Library	Primary Analysis	Application	Secondary And	alysis	Description	Remo
sis Sample1	defaultLibrary	default primary	 SingleTag 	v none	*		×
To assign samples to spots, s Sample	elect a sample in the list an	d then click on spots to ass	ign that sample to them	Mask - 1_spot_ma	ask_sf	Spots - Sample1	
1. Sample1							

- **4.** Assign Samples to spots in the mask on the Specify Samples and Analysis pane. A blue or white circle on the mask indicates that the numbered sample has been assigned to a spot. Clicking on a white circle selects that spot, and clicking on a blue circle un-assigns that spot. To assign a sample, select it from the Sample list, then click on a spot with no sample assigned to it.
- **5.** Click **Finish** to return to the Setup Task pane.
- 6. Choose either to assign run to a flowcell for immediate use or to an instrument database to store for later use, then click **OK**.

- **7.** To assign a run previously saved to the database:
 - a. Click on Manage Runs in the task pane.
 - b. Click the run, then select Assign to Flowcell.
 - c. Choose a flowcell, then click OK.

Create a multiplex sequencing run record

Note: For instructions to set up a sequencing (standard) run record, go to the previous section "Create a sequencing (standard) run record" on page 52.

There are two ways to create a multiplex sequencing run. The first method is to use the Run wizard (see below). The second method is to import a Run Definition file created offline (see "Set up a run by importing a Run Definition file" on page 102).

1. Click **Create Runs** in the Setup task pane on the left menu pane of the ICS (see Figure 49).

File Tools Wizards W	indow Mock Help			
Welcome: lab_user	r	w Cell 1	Elo	w Cell 2
SOLID	Run Name:	W Cell 1	Run Name:	W CONZ
	Created by:	•	Created by:	0
	📲 Assign Run 📷 Edit Run 🥔 Clear 🛄 Run Logs	Heat Map	Assign Run 📷 Edit Run 🥔 Clear 🛄 Run Logs	Heat Map
🔽 Setup	Sample Slide		Sample Slide	
	Show Samples >>		Show Samples >>	
Create Runs				
🎦 Manage Runs				
📑 Run				
Flow Cell Details				
Cycle Scan				
Flow Cell 1				
Flow Cell 2				
There exists				
_	Protocol		Protocol	
•				
System Status 🔹 🔞				
Prime Buffer Line:				
Prime Burrer Line:				
Chiller: 4.1 C	fluidic completed.		fluidic completed.	
Cooling 🖌	Fludics	Imaging	Fludics	Imaging
Lamp: 200 hrs On 🂡	No Run Defined	Run Control	No Run Defined	💌 Run Control 📗
Reset		Load Flowcell		Load Flowcell
Door: Closed-Locked	Start Run	Clear Flowcell	Start Run	Clear Flowcell
Unlock Doors				
Imaging is Online	Fluidics is Online		a	72M of 297M

Figure 49 Use the run wizard to create a multiplex sequencing run.

3

- 2. Complete the information in the Select Run Type and Mask pane (see Figure 50):
 - a. Select the Sequencing option.
 - b. Ensure that the Multiplexing option is checked.
 - c. (Optional) Type a new run name.
 - d. (Optional) Enter a description.
 - e. Ensure that the Run Protocol is set to SOLiD Opti Multiplex.
 - f. Select **BC** for Primer Set 1. Enter the read length for the BC Primer set to 5 bases.
 - **g.** Select **F3** for Primer Set 2. Enter the read length for the F3 Primer sets, which is usually 50 bases.
 - Note: For barcoded fragment libraries of short inserts such as small RNA samples, consult your Field Applications Specialist for the recommended sequencing reagents and read length.
 - h. Select the appropriate mask to use.
 - i. Click Next.

solid0327 - SOLID -	
File Tools Wizards W Welcome: lab_user	indow Hep SETUP > Create/Edit Run > Select Run Type and Mask The following pages will guide you through to set up a run. Required fields are noted with an asterisk (*).
Create New Run 1. Select Bun Type and Mask 2. Specify Samples and Analysis	*Select type of run to create Sequencing WFA Witplexing Identify the run and enter a description *Run Name: solid0327_20090819_2 Description:
	Assign a Primer Set and # of bases. Primers run in sequential order *Select Run Protocol: SOLID Opti Multiplex Primer Set 1: BC V 5 Bases V Primer Set 2: F3 V 50 Bases V
	*Select mask to use: 4_spot_mask_sf Y

Figure 50 Complete the information in the Select Run Type and Mask pane.

- **3.** Complete the information in the Specify Samples and Analysis pane (see Figure 51 on page 58):
 - **a.** Select the number of samples that will be used in the run. A sample consists of a bead sample that may contain many barcoded libraries. A single sample will run in multiple spots on the same slide counts as only one sample; otherwise, the number of samples typically matches the number of spots on the mask.

b. Click the first sample name to select it. Change the sample name if desired. After you select the sample, you are able to enter the names, primary analysis, and description of libraries that are in the sample.

	Tools Wizards Wi	ndow Help				
Vel	come: lab_user	Select how many samples	Run > Specify Samples and A you need for this run. For Application the first row to the remaining rows.		mns in a sequencing	or multiplexing run, you ca
cre	ate New Run	*How many samples will you nee	ed for your mask? 4			
1.	Select Run Type	Sample Name	Primary Analysis		Description	
	and Mask	bcSample1	default primary	*		
	Specify Samples and Analysis	bcSample2	default primary	*		
		bcSample3	default primary	*		
		bcSample4	default primary	~		
		Please select a sample in the abo	ove table to define its libraries. 📀 Barco	ded Sample) Create Barcode L	Library 🔿 Non-Barc	oded Sample

Figure 51 Complete the information in the Specify Samples and Analysis pane.

- 4. For a barcode sample, select Barcoded Sample and click Create New Library to begin entering library information for that sample (Figure 51). If there are any non-barcoded fragment library samples to be sequenced on the same slide as barcoded samples, select Non-barcoded Sample for that sample.
 - (IMPORTANT! Each barcoded sample requires at least one library.
- **5.** Enter information for the first library present in the sample (see Figure 52 on page 59):
 - **a.** Enter the library name.
 - b. Select a Multiplexing Series.

🔼 Create New Library For each library present in a multiplexed sample, enter a Library Name, select the Multiplexing Series used, and specify which Barcode(s) have been added during that library's creation. Library Name: Sample1_lib1 2) Select Barcodes 1) Select Multiplexing Series 3) Review selected barcodes for this library Multiplexing Series A (1-10) (5) V bcA10_01 bcA10_01 Aultiplexing Series B (1-20) V bcA10_02 bcA10 02 bcA10_03 Multiplexing Series A (1-16) 🛃 bcA10_03 bcA10_04 bcA10_05 🛃 bcA10_04 V bcA10_05 bcA10_06 bcA10_07 bcA10_08 bcA10_09 bcA10_10 More about the Selected Multiplexing Series This series contains the 10 barcodes contained in the original SOLID Small RNA Expression Kit. Save Cancel

Figure 52 Enter the information for the libraries in the sample.

() IMPORTANT! Be sure to select the correct Multiplexing Series for your run. You can obtain additional information by selecting the Multiplexing Series and looking at the lower left panel: More about the Selected Multiplexing Series.

Table 7 Contents of the Multiplexing Series[‡]

Multiplexing Series	Contents
A (1–10)	10 barcodes that are in the SOLiD [™] Small RNA Expression Kit
A (1–16)	16 barcodes that are in the SOLiD [™] Multiplexing Early Access set
B (1–20)	20 barcodes that are supplied with the SOLiD [™] 3 System or 16 barcodes supplied with the SOLiD [™] 3 Plus System Use the "Multiplexing Series B (1-20)" option with the SOLiD [™] Transcriptome Multiplex Kit, which contains up to 16 barcodes.

For the latest information regarding Multiplexing Series and barcode kits, contact your Field Applications Specialist.

- 6. Click the selection box for the barcode or barcodes assigned to the library.
- 7. Click Save when you have completed the information for the first library.
- **8.** Repeat steps 4 to 7 for all remaining libraries. The Libraries panel of the Specify Samples and Analysis screen now shows information for all libraries for a particular sample (see Figure 53 on page 60).

me: lab_user	SETUP > Create/Edit Run > S	necify Samples and Ana	lveie				
Solid	Select how many samples you need	the second se			or multiploxing rup, you can aliah	the column bood	or and use stri+D for
	which will copy the value on the first		iu oeconuary Analysis con	inns in a sequencing	or multiplexing run, you can click	k lie columni neau	er and use third for
te New Run	*How many samples will you need for you	mask? 4					
elect Run Type	Sample Name	Primary Analysis		Description			Remove
nd Mask	bcSample1	default primary	~				×
pecify Samples and Analysis	bcSample2	default primary	*				×
	bcSample3	default primary	~				×
	bcSample4	default primary	~				×
	Please select a sample in the above table I	Application	d Sample Create Barcode Secondary Analysis	#Barcodes	oded Sample Multiplexing Series	Options	Selected Barcode
	Sample1_lib1		 SingleTagDefault 	✓ 5	Multiplexing Series A (1-10)		bcA10_01
				· · · · ·			bcA10_02
							bcA10_03 bcA10_04
							bcA10_04
							DCM10_03
	To assign samples to spots, select a sample	in the list and then click on spots t	o assign that sample to them.				
	Sample	in the list and then click on spots t	o assign that sample to them.	Mask - 4_spot_m	ask_sf Spots - bc5ample1		
	Sample 1. bcSample1	in the list and then click on spots t	o assign that sample to them.	Mask - 4_spot_m	ask_sf Spots - bcSample1		
	Sample 1. bcSample1 2. bcSample2 3. bcSample3	in the list and then click on spots t	o assign that sample to them.	Mask - 4_spot_m	ask_sf Spots - bcSample1		
	Sample 1. bcSample1 2. bcSample2	in the list and then click on spots t	o assign that sample to them.	Mask - 4_spot_m			
	Sample 1. bcSample1 2. bcSample2 3. bcSample3	in the list and then click on spots t	o assign that sample to them.	Mask - 4_spot_r			
	Sample 1. bcSample1 2. bcSample2 3. bcSample3	in the list and then click on spots t	o assign that sample to them.	Mask - 4_spot_r	1		
	Sample 1. bcSample1 2. bcSample2 3. bcSample3	in the list and then click on spots t	o assign that sample to them.	Mask - 4_spot_m	2		
	Sample 1. bcSample1 2. bcSample2 3. bcSample3	in the list and then click on spots t	o assign that sample to them.	Mask - 4_spot_m	1		

Figure 53 The Libraries panel shows information on all libraries.

- () IMPORTANT! Review the Selected Barcodes for each library to ensure they are correct. After a run is started, you cannot change the barcode assignment.
- **9.** Repeat steps 4 to 8 for all remaining samples.
 - IMPORTANT! Be sure that the Libraries are correctly assigned to the sample. After a run is started, you cannot easily change the library assignment.
- **10.** Select secondary analysis settings for the sample.
- **11.** Assign samples to unassigned spots in the mask. White circles are unassigned, and blue circles are assigned. To assign a sample:
 - **a.** Select it from the Sample list.

3

b. Click a white (unassigned) spot.

To remove a sample from an assigned (blue) spot, click the spot. The sample is removed, and the spot turns white.

- 12. Click Finish.
 - IMPORTANT! Be to review each sample's library and barcode assignment before starting a run. After a run starts, you cannot change the library or barcode assignment.
- **13.** Choose to assign the run to a flowcell for immediate use or to an instrument database to store for later use, then click **OK**.
- **14.** To assign a run previously saved to the database:
 - a. Click on Manage Runs in the task pane.
 - b. Click the run, then select Assign to Flowcell.
 - c. Choose a flowcell, then click OK.

Detect the focus range

- **Note:** If automatic focus range detection fails, determine the focus range manually (see "Manually find the focus range" on page 103).
- 1. Close the front doors of the SOLiD[™] 3 Plus Analyzer. Open the Imager window by choosing Windows → Imaging System.
- 2. Select Tools > Detect Focusing Range.
- **3.** In the focusing range dialog, specify the stage template file by entering the name directly or by clicking the **Browse** button to navigate to a suitable one (see Figure 54). The stage template must match the slide in the target flowcell(s). If you created a run from the ICS, then select the file **imagingMap.STG** from the subdirectory in C:\Runs whose name matches the name of the run (for example, select C:\Runs\Solid0327_20081209_2_Oct_Test\imagingMap.STG).

🚰 Detect Focusing Range	
Select Stage Template	
[Browse
Please select flowcell: 2 💌	
Go Cancel	
IDLE	

Figure 54 Detect Focusing Range dialog.

4. Select the flowcell using the drop-down menu, then press **Go**. The Imager works for several minutes while it determines the range. The blue progress bar indicates how close it is to completion (see Figure 55). You can also click **Cancel** so that the Imager aborts the ranging operation.

💏 Detect Focusing Range	
Select Stage Template	
C:/Runs/solid0327_20081204_1x15_S3Quad_1/imagingMap.STG	 Browse
Please select flowcell:	
Go Cancel	
Searching focusing range at (-22218, -24504)	

Figure 55 Detect Focusing Range Dialog while detection in progress.

5. When the Imager is done, a dialog appears (see Figure 56). Click **Yes** if you want to replace the values in the local settings file. Click **No** if you want the Imager to discard the newly calculated focus range.

💏 Focu	sing Range Detection 🛛 🛛 🔀
?	The focus range for flowcell 2 is: (660621, 670621).
	Do you want to save these for this flowcell?
	Yes No

Figure 56 Confirm that you want to replace the local settings file.

- **6.** Verify the validity of the newly calculated focus range by taking images at random locations.
 - IMPORTANT! You should see images of beads, ensuring that the algorithm was able to focus on the beads and not on other artifacts (see Figure 57 on page 63). If you do not see bead images or if you see out-of-focus bead images, set the focus range manually (see "Manually find the focus range" on page 103).

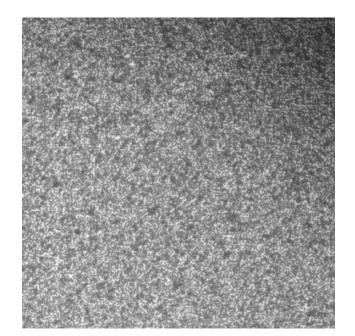


Figure 57 Beads in focus.

Start the sequencing run

1. Ensure that there is adequate disk space for images and results of the sequence run (for the minimum needed disk space, see Table 8). To know the amount of disk space that is available, click **Manage Runs** on the task pane.

Table 8	Minimum required disk space to store images and results
---------	---

Run Type	Minimum space needed for images	Minimum space needed for Primary Analysis results (spch, csfasta, QV.qual)	Minimum space needed for Secondary Analysis results (mapping/pairing)			
Fragment (35 bp)	2.7 TB	0.9 TB	0.4 TB			
Fragment (50 bp)	3.8 TB	1.2 TB	0.6 TB			
Mate-paired (2 × 25 bp)	3.8 TB	1.2 TB	0.6 TB			
Mate-paired (2 \times 35 bp)	5.3 TB	1.7 TB	0.9 TB			
Mate-paired (2×50 bp)	7.5 TB	2.4 TB	1.2 TB			
Barcoded fragment (35, 5 bp)	3 TB	1 TB	0.5 TB			
Barcoded fragment (50, 5 bp)	4.2 TB	1.4 TB	0.7 TB			

- 2. Click Start Run.
- **3.** If there is not enough room to store the data for the run then the Start Run dialog box displays (see Figure 58 on page 64). Choose the appropriate option (see Table 9 on page 64).

Figure 58 This Start Run dialog appears if there is not enough room to store data for the run.

Table 9	Choose one of the three	e options to manage d	isk space.

Option	Description
Start Anyway	Initiates the run. The instrument pauses itself when it runs out of free disk space.
Delete Images [‡]	Launches Historical Runs page in SETS. Images and/or results can be deleted through SETS
Cancel	Aborts the run.

‡ For more information on creating more available disk space, see the Applied Biosystems SOLiD[™] SETS Software v3.5 Getting Started Guide (PN 4444007).

- (Important): Before deleting any images, ensure that data analysis from the previous run is satisfactory and complete. For more information, refer to the *Applied Biosystems SOLiD*[™] SETS Software v3.5 Getting Started Guide (PN 4444007).
- 4. After the run has been initiated, you can click the **Run Log** and **Heat Map** buttons located at the top of the appropriate flowcell panel to learn more information about the current run Figure 59 on page 65. You can also use select the appropriate flowcell in the Cycle Scans menu on the task bar on the left

solid0155 - SOLID - File Tools Wizards W	사망 방법 방법 방법 방법 방법 방법 이 것이 있는 것이 같이 있는 것이 없는 것이 없이 있는 것이 없다.	100
Welcome: lab_user	Flow Cell 1 D Running	Flow Cell 2 Running
SOLID	Run Name: 19850155 20090902 1-50 53 0H10 PC1 Greated by: No.user	Run Name: sold0155 20090902 1×50 53 DH FC2 Created by: lib.user
and the second se	📲 Assign Run 🎯 Edit Run 🛷 Cir 🕞 Run Logs 👖 Heat Map	📲 Asson Run 🎯 Edit Run 🥒 🐨 🕞 Run Logs 🚦 Heat Hop
🔽 Setup	Sample Slide	Sample Slide
🔨 Create Runs	Show Samples >> 4 Samples -in- 4_spot_mask_sf	Show Samples >> 0 Samples -in- 8_spot_mask_sf
Manage Runs		
III Plow Cell Details		
Scan		
Flow Cell 1		
Flow Cell 2		
4	Protocol	Protocol
	SOLID Opti F3 50 bases	SOLID Opti F3 50 bases
	Pre-Scan F3	Pre-Scan F3
System Status 🛛 🕐	F3 - Primer 4 - Ligation 10	F3 - Primer 4 - Ligation 9
Prime Buffer Line:	Ligate Wash Image Prep Scan Slide	Ligate:Dark_Dark Ligate_Phosphata_Image Preg Scan Slide EleaveiLiga_
	(11111111111111111111111111111111111111	(11111111)
Chiller: 4.0 C	Executing Image Prep 2 minutes remaining	Executing Scan Side Filter 1 of 4 Panel 1103 of 1488
	Fluides	Budes Imaging
Reset	Pre-Scan, Primers 1, 2, 3, 4 and 5 [of F3], then run to completion	Pre-Scan, Primers 1, 2, 3, 4 and 5 (of F3), then run to completion
	B Rause Run B Stop Run	Rause Run
Deer: Closed-Locked		
Unlock Doors		
Imaging is Running	Fudes is Running	362M of 403M

Figure 59 How to learn more about the current run.

IMPORTANT! Do not disturb the SOLiD[™] 3 Plus Analyzer while in operation and do not open the flowcell during a pause in the run. Significant perturbations (for example, opening system parts, vibrations) during the run is detrimental to the results.

Control the run

Pause/Resume Run

Note: Special considerations need to be made when using the Pause Run/Resume Run function in certain modules:

When the run has been paused in the middle of or at the end of the Scan Slide module, and if the Scan Slide module of the same cycle needs to be repeated, it is recommended that you resume the run starting from the Image Prep module.

Pausing the run is generally followed by automatic filling of the flowcell with Storage Buffer. Resuming from the Image Prep module fills the flowcell with Imaging Buffer again, which is required to perform the functions in the Scan Slide module. You can resume from the Image Prep module using the Change Run Progress Point command in the Run Control menu (see "Use the Run Control menu" on page 68).

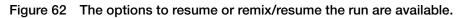
Five modules contain a pre-mixing step for the next module:

- Ligate/Dark Ligate Mix
- Dark Ligate/Phosphatase Mix
- Cleave/Ligate Mix
- Prime/Bridge Ligate Mix
- Bridge Ligate/Phosphatase Mix

When you try to pause a run in the middle of the module, a dialog displays (see Figure 60).

🔀 Pause Run	×
This module contains pre-mixing. Select the type of pause to perform.	
How do you want to pause the run? Pause after current module completes	
Recommended pause. Pauses the run after the current module completes. On resume of the run, execution will begin with the next scheduled module.	
OK Cancel	

Figure 60 Pause Run dialog for pre-mixing module.

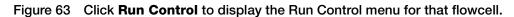

The default setting is to pause after the current module completes so that pre-mixing is not interrupted. If you want to pause the run within a pre-mixing module, select **Pause anyway** (see Figure 61).

🛣 Pause Run 🛛 🔀
This module contains pre-mixing. Select the type of pause to perform.
How do you want to pause the run?
Pause anyway
Pause anyway
Pause after current module completes Pauses the run atter aborting the current module. On resume of the run, resume or remix script will be executed prior to the execution of the current module.
OK Cancel

Figure 61 Pause Run dialog options for pre-mixing module.

When you resume a run to use the pre-mixed reagents in the strip tube, a dialog box displays (see Figure 62). While it is recommended to simply resume the run, the system provides an option to remix the reagents by clicking **Remix/Resume**. In this case, the previous pre-mixed reagent is delivered to the waste and a new reagent is mixed.

Resume - Remix/Resume	
]
Remix/Resume Waste the existing pre-mixed reagents and make a new mixed reagent. (Recommeded if pausing time is > 1 hour.)	
Ok	



Note: One reagent strip contains reagents enough for 10 cycles per primer. Therefore, if the remix option is used, the cycle number which can be used with the reagent strip is reduced.

Use the Run 1. Click **Run Control** to display the Run Control menu (see Figure 63). Control menu

🕵 solid0155 - SOLID -		. 0 🗙
File Tools Wizards W Welcome: lab_user	Indow Heb Flow Cell 1 D Running	Flow Cell 2 Running
SOLID	Run Name: sold0155.2009092 1:50 53 0H10 FC1 Ceated by: lib_user	Run Name: sald0155_2000002_1/s0_52_DH_FC2 0
	📲 Assign Run 🔗 Edit Run 🥒 Clear 🔹 Run Logs 🚦 Heat Map	📲 Assign Run 🎅 Edit Run 🥒 Cear 🕕 Run Logs 🔋 Heat Map
📪 Setup	Sample Slide	Sample Slide
🗲 Create Runs	Show Samples >> 4 Samples -in- 4_spot_mask_sf	Show Samples >> 0 Samples -in- 8_spot_mask_sf
Manage Runs		
Run		
EE Flow Cell Details		
Cycle Scan		
Flow Cell 1		
Flow Cell 2		
٩	Protocol	Protocol
	SOLID Opti F3 50 bases	SOLID Opti F3 50 bases
	Pre-Scan F3	Pre-Scan F3
System Status 🛛 👔	IF3 - Primer 4 - Ligation 10	IF3 - Primer 4 - Ligation 9
Prime Buffer Line:	Ligate Wash Image Prep Scan Slide Scan Slide	Ligate Dark Dark Ligate Phosphata Image Prep Scan Slide Eleave Liga
Prime		
Chiller: 4.0 C	Executing Image Prep 2 minutes remaining	Executing Scan Side Filter 1 of 4 Panel 1103 of 1488
Cooling 💌	Flades	Pudos Imaging
Lamp: 554 hrs On 💡	Pre-Scan, Primers 1, 2, 3, 4 and 5 [of F3], then run to completion	Pre-Scan, Primers 1, 2, 3, 4 and 5 [of F3], then run to completion
Reset		
Door: Closed-Locked 🛐	H Pause Run	N Pause Run
💕 Unlock Doors		
Tenanina is Dunnina	Bide & Durates	Signa of access of the

Run Control commands

(IMPORTANT! Do not disturb the SOLiD[™] 3 Plus Analyzer while in operation and do not open the flowcell during a pause in the run. Significant perturbations (for example, opening system parts, vibrations) during the run is detrimental to the results.

Table 10 Run Control commands

Command [‡]	Command is available while the instrument is				
Stop Run	Running or paused				
Reset Current Primer	Paused within Primer Cycle				
Change Primer Schedule	Paused				
Set Early Pause Point	Running or paused				
Change Run Progress Point	Paused				

‡ Certain commands have sub-menus that allow you to control every step in a run protocol.

Stop Run

The Stop Run command launches a Stop Run dialog box. Choose the appropriate option in the dialog according to Table 11.

 Table 11
 Options available in the Stop Run dialog

Option	Description
Abort Run	Run aborts and analysis jobs are cancelled.
Set run as completed	Run is set as completed. Secondary analysis jobs starts.

Change Primer Schedule

The Change Primer Schedule command allows you to choose a first and second primer, in any order, from primers A through E of any of the three primer sets (F3/R3/BC). Depending on how you set up the run, only primers from a selected primer set are available in the sub-menu.

Set Early Pause Point

The Set Early Pause Point command allows you to define when the instrument pauses. This command can be used to replenish reagents at a more convenient time than that the time defined by the software. Note that if the Change Run Progress Point command (see below) is selected, any changes to the Early Pause Point resets to the default.

Depending on the progress of the run, various sub-menu commands are available under the Set Early Pause Point (see Figure 64 on page 70).

- Prescan
 - o Reset
 - o P2 Label
 - Image Prep
 Focus Map
- Sequence Primer A and B
 - o Priming
 - Reset
 - Prime/Ligate Mix
 - Ligation
 - Ligate/Dark Ligate Mix
 - Dark Ligate/Pho sphatase Mix
 - Pho sphatase
 - Image Prep
 - Scan Slide
 - Cleave/Ligate Mix
- Sequence Primer C, D, and E
 - o Priming
 - Reset
 - Prime/Bridge Ligate Mix
 - Bridge Ligate/Phosphatase Mix
 - Pho sphatase
 - Cleave/Ligate Mix
 - Ligation
 - Ligate/Dark Ligate Mix
 - Dark Ligate/Phosphatase Mix
 - Pho sphatase
 - Image Prep
 - Scan Slide
 - Cleave/Ligate Mix
- Slide Store

Store

Figure 64 Set Early Pause Point sub-menu commands.

Change Run Progress Point

The Change Run Progress Point command allows you to back up or skip to any specific point in the run. Ensure that you select points that are consistent with the progress of the run. The choices available under the Change Run Progress Point command include those described above for the Set Early Pause Point command.

Repeating primers can be performed by using the Change Run Progress Point command, selecting a primer to repeat, resuming the run, and using the Set Early Pause Point command to pause the run after the repeated primer has completed.

Use imaging and analysis controls for specific spots

The Instrument Control Software (ICS) allows you to control imaging for individual spots on a slide. With the controls, you can deposit fragment and mate-paired library samples onto the same slide and turn off imaging of a spot. To access the imaging and analysis controls, in the Sample Slide display of the ICS, right-mouse click a sample name to display options menu. These options are not available until the focal map (prescan) is complete.

The options menu includes:

• Enabled

3

- Imaging Turned Off
- Spot discarded

Enabled

Enabled is the default setting and allows for both imaging and analysis of the spot.

Imaging Turned Off

Imaging Turned Off turns off imaging but allows analysis to complete.

Spot Discarded

Spot Discarded turns off both imaging and analysis. Spot Discarded can be used to remove problematic samples from the software workflow. Use of Spot Discarded updates the Sample Slide display according to the selection in Spot Discarded. Use of Spot Discarded also affects subsequent cycles (see Figure 65).

Figure 65 The Sample Slide display updates after using Imaging Turned Off or Spot Discarded.

Monitor the sequencing run

- Note: To monitor the run remotely, use SETS from any computer to connect to the networked instrument [refer to the *Applied Biosystems SOLiD*[™] SETS Software v3.5 Getting Started Guide (PN 4444007). If desired, set up e-mail notification regarding instrument run and system information using SETS (refer to the SOLiD[™] SETS Software v3.5 Getting Started Guide).
- View the run log1. Click Run Log located at the top right corner of the flowcell panel to open a dialog box describing a series of instrument events.
 - **2.** After you finish viewing the Run Log, click **Close** located at the bottom of the Run Log window.
- View heat maps1. To view the heat map showing bead densities found in the focal map images, click Heat Map located at the top right corner of the flowcell panel (see Figure 66 on page 72).
 - **2.** Look for:
 - Uniform deposition of beads on the slide.

- The actual average bead deposition density/panel value being similar in value to the targeted average bead deposition density (for example, 220,000 beads/panel). A large number of missing panels could indicate a deposition problem.
 - Note: The heat map may not immediately be available after the completion of the Prescan. The software must process all the images collected during the Prescan before the heat map is available. This process may take up to 30 minutes depending on the number of panels imaged.
- **3.** After you finish viewing the Heat Map, click **Close** located at the bottom of the Heat Map window.

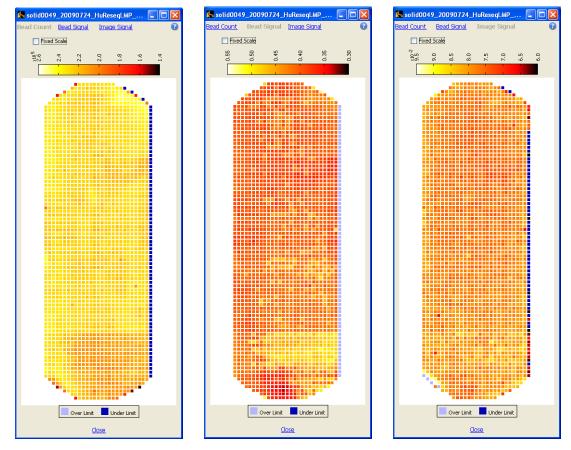


Figure 66 Bead Count (left), Bead Signal (center), and Image Signal (right) heat maps.

View cycle scans

1. Select the appropriate flowcell (Flow Cell 1 or Flow Cell 2) in the Cycle Scan menu on the task bar on the left.

The top section of the Cycle Scans window lists all the scans per ligation cycle for the slide, and the bottom section shows scan information sorted by sample for the scan selected in the top section. Use the parameters shown in Figure 67 on page 73 to assess the progress of the sequencing run (see Table 12 on page 73).

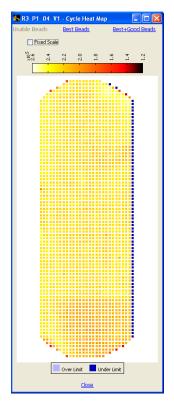
🐻 solid0049 - SOLID -	- 3.5 - User: lab	user											_ @ X
	/indow Help												
Welcome: lab_user SOLID	Cycle Scans				_		_1_new_slide		nala dataik in the her	ttom panel. To view use	d come ovelu	riuchu chu	Of the sector
	control labeled	Show Used Sc	ans Only', bek	ow. The form	at of bead	counts and v	alue bar scaling can	be adjusted via the	controls labeled 'Displ	ay Bead Counts' and 'Disp	olay Value Bar	Scaling'.	
	Change select	ted scan to used	Show Used	I Scans Only I	Display Bead	Counts as: A	verage Beads Per Pan	el 🚩 Display Value	e Bar Scaling as: Fixed	Export Scans	Focal Heat	Map	VUTIA
🔁 Setup	Scan	Date	Complete	Used	Panels	Failed Panels		Best Beads	Best+Good Beads	Bead Color Balance*		Exposure Ti	
Create Runs	R3 P2 02 ¥1 R3 P2 03 ¥1	Jul 30, 20 Jul 30, 20	yes yes	Heat Ma Heat Ma		40 (1%) 35 (1%)	220,931 221,101	105,020 96,667	160,142		75	69 79	41 ^
Manage Runs	R3 P2 04 V1	Jul 30, 20	yes	Heat Ma		(4)	220,980	90,988	1/10			90	56
Manage Runs	R3 P2 05 ¥1	Jul 30, 20	yes	Heat Ma	ap 2357	1 %)	220,978	77,005	137 2		- 3a	102	65
	R3 P2 06 ¥1	Jul 30, 20	yes	🥝 Heat Ma		%)	221,551	68,642	130			115	75
Run	R3 P2 07 V1 R3 P2 08 V1	Jul 30, 20	yes	Heat Ma		46 (1%)	221,074	57,313	120,197 110,170		139	133	82 94
PINAI	R3 P2 08 V1	Jul 31, 20 Jul 31, 20	yes yes	Heat Ma Heat Ma		52 (2%) 52 (2%)	221,229 221,463	47,841	97,009		174	173	105
Flow Cell Details	R3 P2 10 ¥1	Jul 31, 20	yes	Heat Ma		46 (1%)	220,661	28,493	82,064		190	189	114
	R3 P3 01 ¥1	Jul 31, 20	yes	🥥 Heat Ma		40 (1%)	221,034	103,356	156,724		78	73	46
	R3 P3 02 ¥1	Jul 31, 20	yes	🥝 Heat Ma		39 (1%)	220,881	99,214	153,037		93	87	53
	R3 P3 03 V1	Aug 1, 20	yes	🥥 Heat Ma		43 (1%)	220,270	91,671	147,143		108	97	60
	R3 P3 04 V1	Aug 1, 20		Heat Ma		45 (1%)	220,685	78,246	136,367		121	110	70
👩 Cycle Scan	R3 P3 05 V1 R3 P3 06 V1	Aug 1, 20 Aug 1, 20	yes	Heat Ma		43 (1%) 42 (1%)	220,164 221,576	67,967 58,678	127,882		127	122	78
	R3 P3 06 V1	Aug 1, 20	yes yes	Heat Ma		42 (1%) 50 (2%)	221,376	47,750	108,344		151	145	97
Flow Cell 1	R3 P3 08 ¥1	Aug 2, 20	yes	Heat Ma		53 (2%)	221,606	38,580	96,938		187	185	108
Flow Cell 2	R3 P3 09 V1	Aug 2, 20	yes	🥥 Heat Ma		49 (2%)	221,024	30,385	84,701		204	198	118
-	R3 P3 10 ¥1	Aug 2, 20	yes	🥝 Heat Ma		44 (1%)	221,303	23,387	71,657		211	218	128
	R3 P4 01 V1	Aug 2, 20	yes	🥥 Heat Ma		41 (1%)	220,287	97,739	150,515		91	84	51
	R3 P4 02 V1	Aug 3, 20	yes	🥹 Heat Ma	<u>ap</u> 2357	40 (1%)	220,547	91,963	145,657		99	95	60 ⊻
	<												>
								an[R3 P4 06 V1]					
4	Sample Sample1	Panels 2357	Failed Panels 47 (1%)	Usable Beads 221,200		st Beads 2,871	Best+Good Bead 114,035	s Bead Color Balanc	ce* Effective E:	<pre>cposure Times (ms)* 170 96 15</pre>	53 I Satay		Plot A-H A
ystem Status 🛛 👔				,			,		[3b	4]	
Prime Buffer Line:													
Prime													
Chiller: 4.0 C													
Cooling													
.amp: 823 hrs On 🂡													
Reset													
Door: Closed-Locked 🛐													
🚽 Unlock Doors	<						Ш						>
	* Channel order: F	AM, CY3, TXR a	nd CY5.										
Imaging is Running	Fluidics is Online							Ĩ	2			Window	ta sé amoral i te Security Alerte

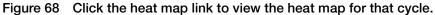
1 Failed panels 2 Best + good beads / usable beads 3a/3b Effective exposure times 4 Satay plots

Figure 67 Parameters available in the Cycle Scans window to assess the progress of the sequencing run.

Table 12	Cycle Scans window	: Distinguish normal	I runs from problematic runs
	Cycle Coulle million	- Diotingalori norma	

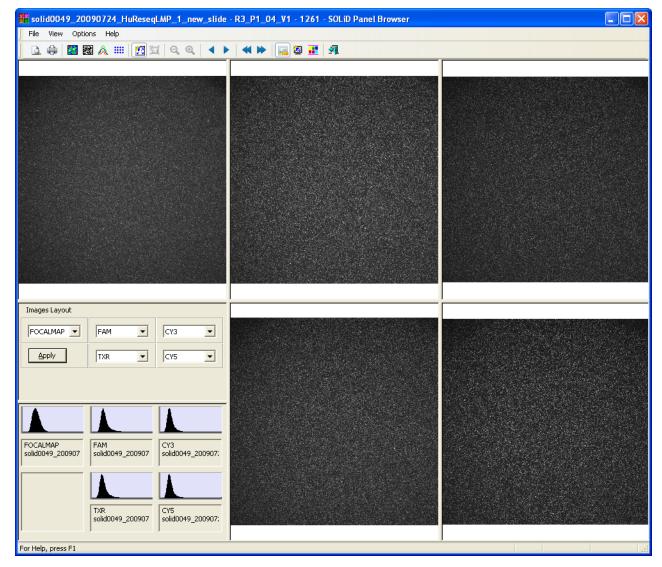
Parameter	Normal run	Problematic run
(1) Failed panels (number of panels that failed image alignment during color-calling).	Gradual decline from ligation cycle 1 to ligation cycle 5 or higher for each sequencing primer. In general, the number of failed panels should be relatively small and consistent.	Run begins with extremely high number of failed panels or dramatic increase in any subsequent ligation cycle for each sequencing primer.
(2) The fraction of (Best + good beads)/usable beads	The fraction can vary depending on the quality of the library, the efficiency of the PCR, and the enrichment process. As a guideline, the fraction is around 0.5 to 0.6 in the first ligation cycle of each primer and drops to 0.2 to 0.3 in the last cycle.	A significant drop in the fraction of good beads in the initial ligation cycles would indicate a reason to pause the run and to troubleshoot the performance.

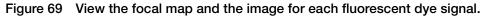



Parameter	Normal run	Problematic run
(3a/3b) Effective exposure times [‡]	Gradual increase from ligation cycles 1 to 5 or higher for each sequence primer. Performance varies from slide to slide and as a function of the age of the SOLiD [™] Light Source. [§] As a guideline, the effective exposure time is typically 20 to 40ms in the first ligation cycle and increases to 100 to 300 ms in the tenth cycle.	250 ms or greater in ligation cycle 1 or when instrument times out when the effective exposure time exceeds 500 ms. Long exposure times may indicate replacement of the SOLiD [™] Light Source. [§]
(4) Satay plots	The first cycle of any primer should show a relatively "clean" Satay plot, with most points clustered on the four color axes and with minimal fraction of the points clustered around the origin.	An abnormal "fuzzy" Satay plot in the first cycle is a reason to pause the run and troubleshoot the performance.
	The quality of the Satay plot typically degrades gradually with each ligation cycle for a single primer cycle, becoming more "fuzzy" in the last cycle.	

‡ Exposure time is indicative of the signal intensity of the beads. The instrument uses an auto-exposure routine, on a per sample basis, to maximize bead signal with minimal image saturation. Shorter exposure times are associated with efficient ligation of the fluorescent probes.

§ You should replace the SOLiD[™] Light Source in the Applied Biosystems SOLiD[™] 3 Plus Analyzer every 1500 hours of use. Refer to Appendix B for instructions.


2. Click the heat map link to view the heat map for that cycle (see Figure 68).



3. Left-click any square panel on the heat map to open the panel browser window. The panel browser allows you to view the focal map and the image for each fluorescent dye signal (see Figure 69).

- 4. After you finish viewing the Cycle Scans, close the Cycle Scans window.
 - Note: If the sequencing run appear problematic, you can: (1) Allow the run to continue and troubleshoot after the run or (2) pause the run and troubleshoot. Consult an Applied Biosystems SOLiD[™] System Field Applications Specialist.

Required Materials

This appendix covers:

A

Set up and perform a workflow analysis (WFA) run	78
Required Applied Biosystems reagent kits	78
Required equipment	78
Required consumables	81
Set up and perform a sequencing run	82
Required Applied Biosystems reagent kits	82
Optional Applied Biosystems kits	83
Required equipment	85
Required consumables	87

Set up and perform a workflow analysis (WFA) run

Required Applied Biosystems reagent kits

Table 16 Required Applied Biosystems reagent kits: WFA run

Item (part number)	Components	Kit component(s) used in…
SOLiD [™] Workflow Analysis Reagents (4406463)	SOLiD [™] Workflow Analysis Reagents	WFA
SOLiD [™] 3 Instrument Buffer	Reset Buffer	Sequencing and/or WFA
Kit (4406479)	Glycerol	
	10× Instrument Buffer	
	Cleave Solution 1	
	Cleave 2 Kit (Cleave 2 Parts 1 and 2)	
	Storage Buffer	
	Imaging Buffer Kit (Imaging Buffer Parts 1 and 2)	
	$1 \times T4$ Ligase Buffer Kit ($1 \times$ Ligase Buffer Parts 1 and 2)	
	1× Phosphatase Buffer	
SOLiD [™] Slide Pack Kit	Slide Storage Buffer	Bead deposition
(4412172)	Sequencing Slides	
SOLiD [™] Bead Deposition	Deposition Buffer	Bead deposition
Kit (4387895)	Overlay Buffer	
	10× Terminal Transferase Buffer	Templated bead preparation
	10× Cobalt chloride	
	Terminal Transferase	
	Bead Linker	

Required equipment

Table 17 Required equipment: WFA run

Item [‡]	Source
SOLiD [™] 3 Plus System	 Applied Biosystems 4444315 (110 V) Applied Biosystems 4444316 (220 V)
SOLiD [™] 3 Plus Kit	Applied Biosystems 4444038
SOLiD [™] 3 Plus Analyzer	Applied Biosystems 4444317
SOLiD [™] Light Source	Applied Biosystems 4388441

Item [‡]	Source
SOLiD [™] Slide Storage Chamber	Applied Biosystems 4406354
SOLiD [™] Deposition Chambers 1-Well [§]	Applied Biosystems 4406352
SOLiD [™] Deposition Chambers 4-Wells [§]	Applied Biosystems 4406358
$SOLiD^{TM}$ Deposition Chambers 8-Wells§	Applied Biosystems 4406359
SOLiD [™] Opti Slide Carriers [§]	Applied Biosystems 4443967
SOLiD [™] Uninterruptible Power Supply (UPS)	 Applied Biosystems 4397781 (SOLiD[™] UPS North America) Applied Biosystems 4393695 (220 V; SOLiD[™] UPS International)
SOLiD [™] Accessory Disk Drive	Applied Biosystems 4426101
SOLiD [™] Bead Concentration Chart	Applied Biosystems 4415131
Covaris [™] S2 System (110 V for U.S. customers) (220 V for international customers) The system includes: • Covaris [™] S2 sonicator	 Applied Biosystems 4387833 (110 V) Applied Biosystems 4392718 (220 V) or Covaris
 Latitude[™] laptop from Dell. MultiTemp III Thermostatic Circulator Covaris-2 series Machine Holder for (one) 1.5-mL microcentrifuge tube 	
 Covaris-2 series Machine Holder for (one) 0.65-mL microcentrifuge tube Covaris-2 series Machine Holder for (one) 0.65-mL microcentrifuge tube 	
Covaris-2 series Machine Holder for (one) 13 mm × 65 mm tube	
Covaris-2 Series Machine Holder for (one) milcroTUBE	
 Covaris microTUBE Prep Station Covaris Water Tank Label Kit Covaris microTubes (1 pack of 25) 	
For system materials summary, see "Covaris™ S2 System Materials Summary," SOLiD [™] 3 Plus System Site Preparation Guide.	

ltem [‡]	Source
6-Tube Magnetic Stand	Applied Biosystems
	AM10055
Microcentrifuge 5417R, refrigerated, without rotor	Eppendorf [#]
	022621807 (120 V/60 Hz) • Eppendorf#
	022621840 (230 V/50 Hz)
FA-45-24-11, fixed-angle rotor,	Eppendorf [#]
24 × 1.5/2 mL, including aluminum lid, aerosol-tight	022636006
NanoDrop [™] ND-1000 Spectrophotometer	Thermo Scientific
(computer required)	ND-1000
Scienceware Dry-Keeper AutoDesiccator Cabinet, Tall [#]	VWR
	24983-455
Tabletop Centrifuge (for 96-well plate)	Major Laboratory Supplier (MLS)
Vortexer	MLS
Picofuge	MLS
Magnetic stirrer	MLS
Incubator (37 °C)	MLS
Refrigerator (4 °C)	MLS
Freezer (–20 °C)	MLS
Pipettors, 20 µL	MLS
Pipettors, 200 µL	MLS
Pipettors, 1000 μL	MLS

Applied Biosystems has validated this protocol using this specific material. Substitution may adversely affect system performance.
 The SOLiD[™] 3 Plus Analyzer is shipped with 2 of each size SOLiD[™] Deposition Chambers and SOLiD[™] Opti Slide Carriers. Two SOLiD[™] Slide Storage Chambers are provided for use with all chambers.
 # Or equivalent but validation of the equipment for library preparation is required.

Required consumables

Table 18 Required consumables: WFA run

Item [‡]	Source
SOLiD [™] Flowcell O-rings, 10-pack	Applied Biosystems
	4398217
Nuclease-free water	Applied Biosystems
	AM9932
ABgene [®] 96 1.2-mL square-well storage	ABgene
plates	AB-1127
3-mm adhesive disks	Grace Bio-Labs
	ST200
Ethylene glycol	American Bioanalytical
	AB00455-01000
CF-1 Calibration Fluid Kit	Thermo Scientific
	CF-1
PR-1 Conditioning Kit§	Thermo Scientific
	PR-1
1.5-mL LoBind Tubes	Eppendorf
	022431021
Kimwipes®	Major Laboratory Supplier (MLS)
Filtered pipettor tips	MLS

‡ Applied Biosystems has validated this protocol using this specific material. Substitution may adversely

Applied biosystem has validated this protocol using this specific material. Substitution may adversely affect system performance. The NanoDrop[™] Conditioning Kit is useful for "reconditioning" the sample measurement pedestals to a hydrophobic state if they become "unconditioned" (see NanoDrop[™] user's manual for more information). The PR-1 kit consists of a container of specially formulated polishing compound and a supply of convenient applicators. §

Set up and perform a sequencing run

Required Applied Table 19 Required Applied Biosystems reagent kits: Sequencing run Biosystems reagent kits

Item (part number)	Components	Kit component(s) used in
SOLiD [™] Opti Fragment	SOLiD [™] Opti Frag Lib Seq – Primer A MM50 Reagents	Fragment sequencing
Library Sequencing Kit – Master Mix 50 (4442236)	SOLiD [™] Opti Frag Lib Seq – Primer B MM50 Reagents	up to 50 bp (all 5 primers)
	SOLiD [™] Opti Frag Lib Seq – Primer C MM50 Reagents	[-····/
	SOLiD [™] Opti Frag Lib Seq – Primer D MM50 Reagents	
	SOLiD [™] Opti Frag Lib Seq – Primer E MM50 Reagents	
	SOLiD [™] Mixing Strip Tube	
SOLiD [™] Opti Fragment	SOLiD [™] Opti Frag Lib Seq – Primer A MM35 Reagents	Fragment sequencing
Library Sequencing Kit – Master Mix 35 (4442218)	SOLiD [™] Opti Frag Lib Seq – Primer B MM35 Reagents	up to 35 bp (all 5 primers)
	SOLiD [™] Opti Frag Lib Seq – Primer C MM35 Reagents	F /
	SOLiD [™] Opti Frag Lib Seq – Primer D MM35 Reagents	
	SOLiD [™] Opti Frag Lib Seq – Primer E MM35 Reagents	
	SOLiD [™] Mixing Strip Tube	
SOLiD [™] Opti Mate-Paired	SOLiD [™] Opti MP Lib Seq – Tag 1 Primer A MM50 Reagents	Mate-pair sequencing
Library Sequencing Kit – Master Mix 50 (4442058)	SOLiD [™] Opti MP Lib Seq – Tag 1 Primer B MM50 Reagents	up to 50 bp for each tag (all 5 primers for
	SOLiD [™] Opti MP Lib Seq – Tag 1 Primer C MM50 Reagents	both tags)
	SOLiD [™] Opti MP Lib Seq – Tag 1 Primer D MM50 Reagents	
	SOLiD [™] Opti MP Lib Seq – Tag 1 Primer E MM50 Reagents	
	SOLiD [™] Opti MP Lib Seq – Tag 2 Primer A MM50 Reagents	
	SOLiD [™] Opti MP Lib Seq – Tag 2 Primer B MM50 Reagents	
	SOLiD [™] Opti MP Lib Seq – Tag 2 Primer C MM50 Reagents	
	SOLiD [™] Opti MP Lib Seq – Tag 2 Primer D MM50 Reagents	
	SOLiD [™] Opti MP Lib Seq – Tag 2 Primer E MM50 Reagents	
	SOLiD [™] Mixing Strip Tubes	
SOLiD [™] Opti Mate-Paired	SOLiD [™] Opti MP Lib Seq – Tag 1 Primer A MM35 Reagents	Mate-pair sequencing
Library Sequencing Kit – Master Mix 35 (4442057)	SOLiD [™] Opti MP Lib Seq – Tag 1 Primer B MM35 Reagents	up to 35 bp for each tag (all 5 primers for
	SOLiD [™] Opti MP Lib Seq – Tag 1 Primer C MM35 Reagents	both tags)
	SOLiD [™] Opti MP Lib Seq – Tag 1 Primer D MM35 Reagents	
	SOLiD [™] Opti MP Lib Seq – Tag 1 Primer E MM35 Reagents	
	SOLiD [™] Opti MP Lib Seq – Tag 2 Primer A MM35 Reagents	
	SOLiD [™] Opti MP Lib Seq – Tag 2 Primer B MM35 Reagents	
	SOLiD [™] Opti MP Lib Seq – Tag 2 Primer C MM35 Reagents	
	SOLiD [™] Opti MP Lib Seq – Tag 2 Primer D MM35 Reagents	
	SOLiD [™] Opti MP Lib Seq – Tag 2 Primer E MM35 Reagents	
	SOLiD [™] Mixing Strip Tubes	

Item (part number)	Components	Kit component(s) used in
SOLiD [™] Opti Fragment Library Sequencing Kit – 5bp Barcode Set (4442261)	SOLiD [™] Opti Frag Lib Seq – 5bp BC Probe Reagents SOLiD [™] Opti Frag Lib Seq – 5bp BC Primers Reagents SOLiD [™] Opti Frag Lib Seq – 5bp BC Bridge Probes Reagents	Barcode sequencing up to 5 bp for barcoded fragment sequencing runs
SOLiD [™] 3 Instrument Buffer Kit (4406479)	 Reset Buffer Glycerol 10× Instrument Buffer Cleave Solution 1 Cleave 2 Kit (Cleave 2 Parts 1 and 2) Storage Buffer Imaging Buffer Kit (Imaging Buffer Parts 1 and 2) 1× T4 Ligase Buffer Kit (Ligase Buffer Parts 1 and 2) 1× Phosphatase Buffer 	Sequencing and/or WFA
SOLiD [™] Slide Pack Kit (4412172)	Slide Storage Buffer Sequencing Slides	Bead deposition
SOLiD [™] Bead Deposition Kit (4387895)	Deposition Buffer Overlay Buffer	Bead deposition
	10 × Terminal Transferase Buffer 10 × Cobalt chloride Terminal Transferase Bead Linker	Templated bead preparation

Optional Applied Table 20 Optional Applied Biosystems kits: Sequencing run Biosystems kits

Item (part number)	Components	Kit component(s) used in
SOLiD [™] Opti Fragment Library Sequencing – Primer A Master Mix 50 (4442237)	SOLiD [™] Opti Frag Lib Seq – Primer A MM50 reagents	Fragment sequencing up to 50 bp (first primer only)
SOLiD [™] Opti Fragment Library Sequencing – Primer B Master Mix 50 (4442238)	SOLiD [™] Opti Frag Lib Seq – Primer B MM50 reagents	Fragment sequencing up to 50 bp (second primer only)
SOLiD [™] Opti Fragment Library Sequencing – Primer C Master Mix 50 (4442239)	SOLiD [™] Opti Frag Lib Seq – Primer C MM50 reagents	Fragment sequencing up to 50 bp (third primer only)
SOLiD [™] Opti Fragment Library Sequencing – Primer D Master Mix 50 (4442240)	SOLiD [™] Opti Frag Lib Seq – Primer D MM50 reagents	Fragment sequencing up to 50 bp (fourth primer only)
SOLiD [™] Opti Fragment Library Sequencing – Primer E Master Mix 50 (4442241)	SOLiD [™] Opti Frag Lib Seq – Primer E MM50 reagents	Fragment sequencing up to 50 bp (fifth primer only)
SOLiD [™] Opti Fragment Library Sequencing – Primer A Master Mix 35 (4442219)	SOLiD [™] Opti Frag Lib Seq – Primer A MM35 reagents	Fragment sequencing up to 35 bp (first primer only)
SOLiD [™] Opti Fragment Library Sequencing – Primer B Master Mix 35 (4442220)	SOLiD [™] Opti Frag Lib Seq – Primer B MM35 reagents	Fragment sequencing up to 35 bp (second primer only)
SOLiD [™] Opti Fragment Library Sequencing – Primer C Master Mix 35 (4442221)	SOLiD [™] Opti Frag Lib Seq – Primer C MM35 reagents	Fragment sequencing up to 35 bp (third primer only)
SOLiD [™] Opti Fragment Library Sequencing – Primer D Master Mix 35 (4442222)	SOLiD [™] Opti Frag Lib Seq – Primer D MM35 reagents	Fragment sequencing up to 35 bp (fourth primer only)

Item (part number)	Components	Kit component(s) used in
SOLiD [™] Opti Fragment Library Sequencing – Primer E Master Mix 35 (4442223)	SOLiD [™] Opti Frag Lib Seq – Primer E MM35 reagents	Fragment sequencing up to 35 bp (fifth primer only)
SOLiD [™] Opti Mate-Paired Library Sequencing – Tag1 Primer A Master Mix 50 (4442243)	SOLiD [™] Opti MP Lib Seq – Tag1 Primer A MM50 reagents	Mate-pair sequencing up to 50 bp for Tag 1 (first primer only)
SOLiD [™] Opti Mate-Paired Library Sequencing – Tag1 Primer B Master Mix 50 (4442244)	SOLiD [™] Opti MP Lib Seq – Tag1 Primer B MM50 reagents	Mate-pair sequencing up to 50 bp for Tag 1 (second primer only)
SOLiD [™] Opti Mate-Paired Library Sequencing – Tag1 Primer C Master Mix 50 (4442245)	SOLiD [™] Opti MP Lib Seq – Tag1 Primer C MM50 reagents	Mate-pair sequencing up to 50 bp for Tag 1 (third primer only)
SOLiD [™] Opti Mate-Paired Library Sequencing – Tag1 Primer D Master Mix 50 (4442246)	SOLiD [™] Opti MP Lib Seq – Tag1 Primer D MM50 reagents	Mate-pair sequencing up to 50 bp for Tag 1 (fourth primer only)
SOLiD [™] Opti Mate-Paired Library Sequencing – Tag1 Primer E Master Mix 50 (4442247)	SOLiD [™] Opti MP Lib Seq – Tag1 Primer E MM50 reagents	Mate-pair sequencing up to 50 bp for Tag 1 (fifth primer only)
SOLiD [™] Opti Mate-Paired Library Sequencing – Tag2 Primer A Master Mix 50 (4442249)	SOLiD [™] Opti MP Lib Seq – Tag2 Primer A MM50 reagents	Mate-pair sequencing up to 50 bp for Tag 2 (first primer only)
SOLiD [™] Opti Mate-Paired Library Sequencing – Tag2 Primer B Master Mix 50 (4442250)	SOLiD [™] Opti MP Lib Seq – Tag2 Primer B MM50 reagents	Mate-pair sequencing up to 50 bp for Tag 2 (second primer only)
SOLiD [™] Opti Mate-Paired Library Sequencing – Tag2 Primer C Master Mix 50 (4442251)	SOLiD [™] Opti MP Lib Seq – Tag2 Primer C MM50 reagents	Mate-pair sequencing up to 50 bp for Tag 2 (third primer only)
SOLiD [™] Opti Mate-Paired Library Sequencing – Tag2 Primer D Master Mix 50 (4442252)	SOLiD [™] Opti MP Lib Seq – Tag2 Primer D MM50 reagents	Mate-pair sequencing up to 50 bp for Tag 2 (fourth primer only)
SOLiD [™] Opti Mate-Paired Library Sequencing – Tag2 Primer E Master Mix 50 (4442253)	SOLiD [™] Opti MP Lib Seq – Tag2 Primer E MM50 reagents	Mate-pair sequencing up to 50 bp for Tag 2 (fifth primer only)
SOLiD [™] Opti Mate-Paired Library Sequencing – Tag1 Primer A Master Mix 35 (4442225)	SOLiD [™] Opti MP Lib Seq – Tag1 Primer A MM35 reagents	Mate-pair sequencing up to 35 bp for Tag 1 (first primer only)
SOLiD [™] Opti Mate-Paired Library Sequencing – Tag1 Primer B Master Mix 35 (4442226)	SOLiD [™] Opti MP Lib Seq – Tag1 Primer B MM35 reagents	Mate-pair sequencing up to 35 bp for Tag 1 (second primer only)
SOLiD [™] Opti Mate-Paired Library Sequencing – Tag1 Primer C Master Mix 35 (4442227)	SOLiD [™] Opti MP Lib Seq – Tag1 Primer C MM35 reagents	Mate-pair sequencing up to 35 bp for Tag 1 (third primer only)
SOLiD [™] Opti Mate-Paired Library Sequencing – Tag1 Primer D Master Mix 35 (4442228)	SOLiD [™] Opti MP Lib Seq – Tag1 Primer D MM35 reagents	Mate-pair sequencing up to 35 bp for Tag 1 (fourth primer only)
SOLiD [™] Opti Mate-Paired Library Sequencing – Tag1 Primer E Master Mix 35 (4442229)	SOLiD [™] Opti MP Lib Seq – Tag1 Primer E MM35 reagents	Mate-pair sequencing up to 35 bp for Tag 1 (fifth primer only)
SOLiD [™] Opti Mate-Paired Library Sequencing – Tag2 Primer A Master Mix 35 (4442231)	SOLiD [™] Opti MP Lib Seq – Tag2 Primer A MM35 reagents	Mate-pair sequencing up to 35 bp for Tag 2 (first primer only)
SOLiD [™] Opti Mate-Paired Library Sequencing – Tag2 Primer B Master Mix 35 (4442232)	SOLiD [™] Opti MP Lib Seq – Tag2 Primer B MM35 reagents	Mate-pair sequencing up to 35 bp for Tag 2 (second primer only)
SOLiD [™] Opti Mate-Paired Library Sequencing – Tag2 Primer C Master Mix 35 (4442233)	SOLiD [™] Opti MP Lib Seq – Tag2 Primer C MM35 reagents	Mate-pair sequencing up to 35 bp for Tag 2 (third primer only)
SOLiD [™] Opti Mate-Paired Library Sequencing – Tag2 Primer D Master Mix 35 (4442234)	SOLiD [™] Opti MP Lib Seq – Tag2 Primer D MM35 reagents	Mate-pair sequencing up to 35 bp for Tag 2 (fourth primer only)
SOLiD [™] Opti Mate-Paired Library Sequencing – Tag2 Primer E Master Mix 35 (4442235)	SOLiD [™] Opti MP Lib Seq – Tag2 Primer E MM35 reagents	Mate-pair sequencing up to 35 bp for Tag 2 (fifth primer only)
SOLiD [™] Mixing Strip Tube (4406595)	SOLiD [™] Mixing Strip Tubes	Fragment or mate-pair sequencing

Required Table 21 Required equipment: Sequencing run equipment

Item [‡]	Source
SOLiD [™] 3 Plus System	 Applied Biosystems 4444315 (110 V) Applied Biosystems 4444316 (220 V)
SOLiD [™] 3 Plus Analyzer	Applied Biosystems 4444317
SOLiD [™] 3 Plus Kit	Applied Biosystems 4444038
SOLiD [™] Light Source	Applied Biosystems 4388441
SOLiD [™] Slide Storage Chamber	Applied Biosystems 4406354
SOLiD [™] Deposition Chambers 1-Well [§]	Applied Biosystems 4406352
SOLiD [™] Deposition Chambers 4-Wells [§]	Applied Biosystems 4406358
SOLiD [™] Deposition Chambers 8-Wells [§]	Applied Biosystems 4406359
SOLiD [™] Opti Slide Carriers [§]	Applied Biosystems 4443967
SOLiD [™] Uninterruptible Power Supply (UPS)	 Applied Biosystems 4397781 (SOLiD[™] UPS North America) Applied Biosystems 4393695 (220 V; SOLiD[™] UPS International)
SOLiD [™] Accessory Disk Drive	Applied Biosystems 4426101
SOLiD [™] Bead Concentration Chart	Applied Biosystems 4415131

ltem [‡]	Source
Covaris [™] S2 System (110 V for U.S. customers) (220 V for international customers) The system includes: • Covaris [™] S2 sonicator • Latitude [™] laptop from Dell • MultiTemp III Thermostatic Circulator • Covaris-2 series Machine Holder for (one) 1.5-mL microcentrifuge tube • Covaris-2 series Machine Holder for (one) 0.65-mL microcentrifuge tube • Covaris-2 series Machine Holder for (one) 1.5-mL microcentrifuge tube • Covaris-2 series Machine Holder for (one) 1.3 mm × 65 mm tube • Covaris-2 Series Machine Holder for (one) milcroTube • Covaris -2 Series Machine Holder for (one) milcroTube • Covaris Water Tank Label Kit • Covaris Water Tank Label Kit • Covaris microTubes (1 pack of 25) For system materials summary, see "Covaris [™] S2 System Materials Summary," <i>SOLiD[™] 3 Plus System Site Preparation</i> <i>Guide</i> .	 Applied Biosystems 4387833 (110 V) Applied Biosystems 4392718 (220 V) or Covaris
6-Tube Magnetic Stand	Applied Biosystems AM10055
Microcentrifuge 5417R, refrigerated, without rotor	 Eppendorf[#] 022621807 (120 V/60 Hz) Eppendorf[#] 022621840 (230 V/50 Hz)
FA-45-24-11, fixed-angle rotor, $24 \times 1.5/2$ mL, including aluminum lid, aerosol-tight	Eppendorf [#] 022636006
NanoDrop [™] ND-1000 Spectrophotometer (computer required)	Thermo Scientific ND-1000
Scienceware Dry-Keeper AutoDesiccator Cabinet, Tall [#]	VWR 24983-455
Tabletop Centrifuge (for 96-well plate)	Major Laboratory Supplier (MLS)
Vortexer	MLS
Picofuge	MLS
Magnetic stirrer	MLS
Incubator (37 °C)	MLS
Refrigerator (4 °C)	MLS
Freezer (–20 °C)	MLS
Pipettors, 20 µL	MLS

Item [‡]	Source
Pipettors, 200 µL	MLS
Pipettors, 1000 μL	MLS

Applied Biosystems has validated this protocol using this specific material. Substitution may adversely affect system performance.
 The SOLiD[™] 3 Plus Analyzer is shipped with 2 of each size SOLiD[™] Deposition Chambers and SOLiD[™] Opti Slide Carriers. Two SOLiD[™] Slide Storage Chambers are provided for use with all chambers.

Or equivalent but validation of the equipment for library preparation is required. #

Required consumables

Table 22 Required consumables: Sequencing run

Item [‡]	Source
SOLiD [™] Flowcell O-ring. 10-pack	Applied Biosystems
	4398217
Nuclease-free water	Applied Biosystems
	AM9932
ABgene [®] 96 1.2-mL square-well storage	ABgene
plates	AB-1127
3-mm adhesive disks	Grace Bio-Labs
	ST200
Ethylene glycol	American Bioanalytical
	AB00455-01000
CF-1 Calibration Fluid Kit	Thermo Scientific
	CF-1
PR-1 Conditioning Kit§	Thermo Scientific
	PR-1
1.5-mL LoBind Tubes	Eppendorf
	022431021
Kimwipes®	Major Laboratory Supplier (MLS)
Filtered pipettor tips	MLS

‡ Applied Biosystems has validated this protocol using this specific material. Substitution may adversely

The NanoDrop[™] Conditioning Kit is useful for "reconditioning" the sample measurement pedestals to a hydrophobic state if they become "unconditioned" (see NanoDrop[™] user's manual for more information). The PR-1 kit consists of a container of specially formulated polishing compound and a supply of § convenient applicators.

Appendix A Required Materials Set up and perform a sequencing run

В

Supplemental Procedures

This appendix covers:

Clean the SOLiD [™] Deposition Chamber using a sonicator 90
Clean the SOLiD [™] Deposition Chamber using Extran 300
Clean the Instrument Buffer bottle
Flush the fluidic lines
Install the SOLiD ^{TM} flowcell O-ring
Clean the reagent strip cover 100
■ Replace the SOLiD TM Light Source
Set up a run by importing a Run Definition file 102
Manually find the focus range 103
Shut down the SOLiD ^{TM} 3 Plus Analyzer 115
Reset the robot position 115
Store the slide in a flowcell 115

Clean the SOLiD[™] Deposition Chamber using a sonicator

Clean the SOLiD[™] Deposition Chamber a day before slide deposition with a sonicator or with Extran 300 (see "Clean the SOLiD[™] Deposition Chamber using Extran 300" on page 92).

Required Table

Table 23 Required equipment: Clean the Deposition Chamber with a sonicator

ItemSourceSonicator‡Branson Ultrasonics, Inc.
8510R-DTH2-L beakerMajor Laboratory Supplier (MLS)

‡ Applied Biosystems has validated this protocol using this specific material. Substitution may adversely affect system performance

Required Table 24 Required consumables: Clean the Deposition Chamber with a sonicator consumables

Item	Source
Bleach	Major Laboratory Supplier (MLS) [‡]
Deionized water	MLS
Hot water	MLS

For the MSDS of any chemical not distributed by Applied Biosystems, contact the chemical manufacturer. Before handling any chemicals, refer to the MSDS provided by the manufacturer, and observe all relevant precautions.

- 1. Thoroughly wipe the beaker and the inside of the sonicator with 10% bleach, then fill the sonicator to the fill line with deionized water. Clean the sonicator and replace the deionized water every week. Clean the beaker before use.
- 2. Set the sonicator temperature to 25 °C, then allow it to equilibrate before use.
- 3. Immediately after the SOLiD[™] Deposition Chamber assembly is disassembled, thoroughly rinse the SOLiD[™] Deposition Chamber with hot water to remove residual buffers from previous deposition. Rinse the base of the chamber with deionized water and allow it to dry overnight.
- 4. Degas the sonicator for 5 minutes before use.
- 5. Place the SOLiD[™] Deposition Chamber and SOLiD[™] Opti Slide Carrier into the beaker. Place the beaker in the sonicator, then sonicate the SOLiD[™] Deposition Chamber and the SOLiD[™] Opti Slide Carrier for 10 minutes.

6. After sonication, remove the SOLiD[™] Deposition Chamber and SOLiD[™] Opti Slide Carrier from the sonicator, then rinse the SOLiD[™] Deposition Chamber and SOLiD[™] Opti Slide Carrier thoroughly with deionized water (3 to 5 minutes for each chamber). When rinsing the chamber, be careful with the face and O-ring that come into contact with the slide.

7. Dry the SOLiD[™] Deposition Chamber and SOLiD[™] Opti Slide Carrier overnight or at 37 °C for 1 hour before use.

⁽⁾ **IMPORTANT!** Do not use abrasive chemicals or wipes, because they can damage the chamber and gasket.

Clean the SOLiD[™] Deposition Chamber using Extran 300

Clean the SOLiD[™] Deposition Chamber a day before slide deposition with Extran 300 or with a sonicator (see "Clean the SOLiD[™] Deposition Chamber using a sonicator" on page 90).

Required Table 25 Required equipment: Clean the Deposition Chamber with Extran 300

Item	Source
Tub	Major Laboratory Supplier (MLS)
Pipette or graduated cylinder	MLS

Required consumables

equipment

ired Table 26 Required consumables: Clean the Deposition Chamber with Extran 300

Item	Source
Extran 300	VWR
	EM-EX0996-2
Deionized water	Major Laboratory Supplier (MLS) [‡]
Hot water	MLS

For the MSDS of any chemical not distributed by Applied Biosystems, contact the chemical manufacturer. Before handling any chemicals, refer to the MSDS provided by the manufacturer, and observe all relevant precautions.

- Prepare enough 1:1000 dilution of Extran 300 and deionized water to fill a large tub suitable for washing SOLiD[™] Deposition Chambers, leaving enough empty volume in the tub for the addition of the SOLiD[™] Deposition Chambers (for example, 5 mL of Extran 300 in 4995 mL deionized water for a 7-L tub).
- Immediately after the SOLiD[™] Deposition Chamber assembly is disassembled, thoroughly rinse the SOLiD[™] Deposition Chamber assembly with hot water, removing residual buffers from the previous deposition. Rinse the base of the chamber with deionized water and allow it to dry overnight.
- 3. Place the SOLiD[™] Deposition Chamber and SOLiD[™] Opti Slide Carrier into the tub to soak for 5 minutes.
- 4. Gently agitate the tub for 2 minutes. Be careful not to let the face of the SOLiD[™] Deposition Chamber rub against the tub or other SOLiD[™] Deposition Chambers.
- 5. Allow the SOLiD[™] Deposition Chamber and SOLiD[™] Opti Slide Carrier to soak for another 5 minutes.

- 6. After the second soak, remove the SOLiD[™] Deposition Chamber and SOLiD[™] Opti Slide Carrier from the tub and rinse thoroughly with deionized water (3 to 5 minutes for each chamber). When rinsing the chamber, be careful with the face and O-ring that come into contact with the slide.
 - () **IMPORTANT!** Do not use abrasive chemicals or wipes, because they can damage the chamber and gasket.
- 7. Dry the SOLiD[™] Deposition Chamber and SOLiD[™] Opti Slide Carrier overnight before use.

Clean the Instrument Buffer bottle

Regular cleaning of the Instrument Buffer bottle is required for every run. Failure to clean the Instrument Buffer bottle regularly may allow microbial contaminants to proliferate in the system.

If the level of Instrument Buffer in the Instrument Buffer bottle falls below the recommended fill volume, do not add new Instrument Buffer to "top off" the Buffer that has been standing in the Instrument Buffer bottle. Topping off can lead to contamination.

Required Table 27 Required equipment: Clean the Instrument Buffer bottle equipment

Item	Source
Beaker or graduated cylinder	Major Laboratory Supplier (MLS)
Bottle brush	MLS

Required Table 28 Required consumables: Clean the Instrument Buffer bottle consumables

Item	Source
Deionized water	Major Laboratory Supplier (MLS) [‡]
Bleach	MLS
Water	MLS

For the MSDS of any chemical not distributed by Applied Biosystems, contact the chemical manufacturer. Before handling any chemicals, refer to the MSDS provided by the manufacturer, and observe all relevant precautions.

- **1.** Rinse the Instrument Buffer bottle three times with approximately 1 L of deionized water.
- 2. Inspect the Instrument Buffer bottle for visible signs of microbial contaminants.
- **3.** If any contaminants are present, clean the Instrument Buffer bottle with bleach:
 - a. Pour approximately 500 mL of bleach into the Instrument Buffer bottle.
 - b. Add approximately 500 mL of water to the bleach in the bottle.
 - **c.** Scrub the bottle with a bottle brush.
 - d. Rinse the bottle at least two times with water.
 - e. Rinse the bottle at least three more times with deionized water.

Flush the fluidic lines

If the SOLiDTM 3 Plus Analyzer is in continuous use, the fluidics system in the instrument generally does not need much routine care beyond regular cleaning of the Instrument Buffer bottle and flushing of the lines every three months. However, if the SOLiDTM 3 Plus Analyzer will be sitting idle for more than two weeks, flush the fluidic system and power down the instrument with the fluidic lines empty.

Note: The instrument flush procedure comprises two scripts. Each script takes approximately 13 minutes to complete.

Required Table consumables

Table 29	Required consumables: Flush the fluidic lines
----------	---

Item	Source
Deionized water	Major Laboratory Supplier (MLS)
Slides	MLS

1. Open the Instrument Shutdown wizard by choosing Wizards → Instrument Shutdown (Figure 70).

File	Tools	Wizards	Window Help
Welcome: I		Change Syringe	
11	DD	Instrument Shutdown	
			INDERVICE SOLOOOD

Figure 70 Open Instrument Shutdown Wizard.

- 2. In the Wizard's introduction screen, click Next.
- 3. In the System Wash screen, click Unlock Doors (Figure 71 on page 96).

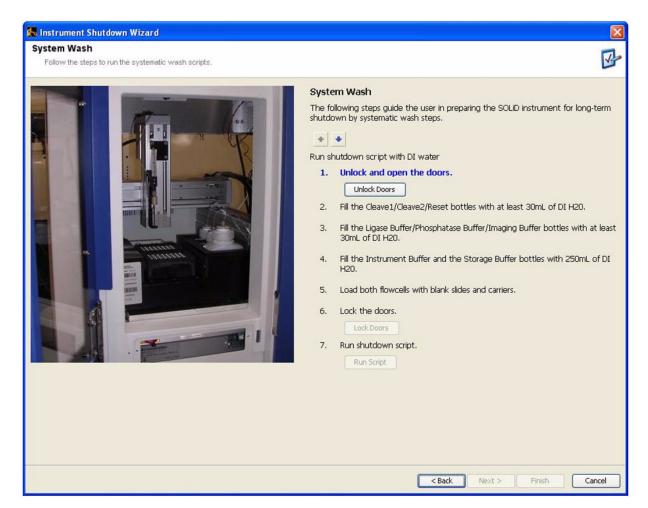


Figure 71 Complete the actions in the first System Wash screen.

4. Replace all of the bottles from the side of the instrument, the chiller block, and the cabinet with rinsed-out bottles.

All bottles *except* the Instrument Buffer and Storage Buffer bottles should contain at least 30 mL of deionized water. The Instrument Buffer and Storage Buffer bottles. These two bottles require 250 mL.

- **5.** Load a slide onto each of the flowcells. You can load used slides or 1-inch \times 3-inch standard microscope slides for this step.
- 6. Click Lock Doors.
- 7. Click Run Script to begin instrument flush.

Note: The script takes approximately 13 minutes to complete.

8. After the script has completed, click Next.

9. In the System Wash screen, click Unlock Doors and remove all of the bottles from the side of the instrument, the chiller block, and the cabinet.You will now perform a dry flush of the system (Figure 72).

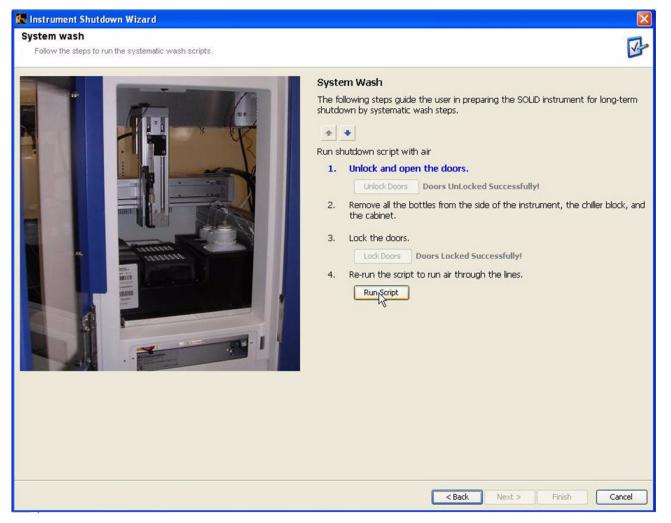


Figure 72 Complete the actions in the second System Wash screen.

10. To begin the dry instrument flush, click Run Script.

Note: This script takes approximately 13 minutes to complete.

- **11.** Perform one of the following:
 - Analyze in continuous use: If the SOLiD[™] 3 Plus Analyzer is *in continuous use* and you are performing this flush every three months as required for preventive maintenance, click Cancel (Figure 73 on page 98). Do not shut down the power to the Linux head node and compute nodes.
 - SOLiD[™] 3 Plus Analyzer idle for more than two weeks: If the SOLiD[™] 3 Plus Analyzer will not be used for more than two weeks, click ShutDown (Figure 73 on page 98). Close down the SOLiD[™] Instrument Control Software and power down the instrument.

🔀 Instrument Shutdown Wizard	
Shutdown Linux System	
This page guide you through Linux system shutdown.	
	 Shutdown Linux System I to power off Linux head node and compute nodes, press the "shutDown" button. ShutDown Wait 30 sec for the system to shutdown successfully by inspecting the light indicator on the front panel. If the light indicator is still on, please contact AB technical support.
	<back next=""> Finish Canque</back>

Figure 73 Click Cancel if performing regular maintenance or ShutDown to power down the instrument.

В

Install the SOLiD[™] flowcell O-ring

After each run, check the SOLiD[™] flowcell O-ring for cuts and abrasions. If you see any abnormalities, replace the O-ring. Inspect the O-ring groove for debris or contamination. Clean the O-ring groove with water as needed.

Required equipment

Table 30 Required equipment: Install the flowcell O-ring

Item	Source
SOLiD [™] Flowcell O-ring, 10-pack	Applied Biosystems 4398217

Procedure1. Insert the O-ring into the groove on the flowcell so that the smooth side is on top (see Figure 74).

2. Run your finger around the O-ring to make sure that there are no high spots.



Figure 74 Install the SOLiDTM O-Ring on a flowcell.

Clean the reagent strip cover

Inspect the top and bottom of the reagent strip covers after each run for splattered wet or dry reagents. If you see reagent on a cover, clean the cover (see Table 33).

Required

Required equipment: Clean the reagent strip cover Table 31

equipment

Item	Source
Pipette or graduated cylinder	Major Laboratory Supplier (MLS) [‡]
Scrub brush	MLS

‡ For the MSDS of any chemical not distributed by Applied Biosystems, contact the chemical manufacturer. Before handling any chemicals, refer to the MSDS provided by the manufacturer, and observe all relevant precautions.

Table 32 Required consumables: Clean the reagent strip cover

Required consumables

Item	Source
Extran 300	VWR
	EM-EX0996-2
Kimwipes®	Major Laboratory Supplier (MLS)
Deionized water	MLS
Cotton swabs	MLS

Table 33 Clean the reagent strip cover according to location or amount of reagent splatter

lf you see	Then
Minor splashes	Wipe the reagent strip cover with a Kimwipe [®] . If the reagents are dried, first wet the Kimwipe moistened with deionized water or a dilution of Extran 300 wash detergent in deionized water
Reagents in the holes of the of the reagent strip cover	Wipe the inside surfaces of the holes with a cotton swab. If the reagents are dried, first wet the cotton swab as necessary with deionized water or a dilution of Extran 300 wash detergent in deionized water.
Large areas of dried reagents	Wash the covers in a dilution of Extran wash detergent (10 mL Extran 300 in 1 L of deionized water). If needed, use a scrub brush.

Replace the SOLiD[™] Light Source

WARNING! PHYSICAL INJURY HAZARD. Hot Surface. Surface of the SOLiD[™] Light Source may be hot. Use care when working around the SOLiD[™] Light Source to avoid being burned.

Replace the SOLiD[™] Light Source in the SOLiD[™] 3 Plus Analyzer every 1500 hours.

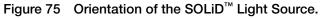

Required equipment

Table 34	Replace th	e SOLiD [™]	Light Source
----------	------------	----------------------	--------------

Item	Source
SOLiD [™] Light Source	Applied Biosystems 4388441

- **1.** Unscrew the 4 screws retaining the light box access cover on the top of the instrument.
- **2.** Remove the cover to the light source from the housing.
- **3.** Pull the light source straight up and out of unit.
- 4. Slide a new SOLiD[™] Light Source into place. Ensure that the light source is oriented in the correct direction (see Figure 75).
- 5. Refit and screw down the access cover on the housing.
- 6. In the System Status menu on the ICS, click Reset to reset the lamp timer.

Set up a run by importing a Run Definition file

A sequencing run can be set up by importing a Run Definition file that has been created offline. Setting up a run by importing a run definition file saves time reentering information of a repeated run.

- Acquire a template Run Definition file. The most reliable way of acquiring the file is to create a run using the Run Wizard, assign it to the database, then select Export Run from the Manage Runs window.
- **2.** Create a Run Definition with the information appropriate to your run. Save the file as a .txt file.
- 3. Click Manage Runs, select Import Run, then select the Run Definition file.
- 4. To assign a run previously saved to the database:
 - a. Click on Manage Runs in the task pane.
 - b. Click the run, then select Assign to Flowcell.
 - c. Choose a flowcell, then click OK.

Manually find the focus range

You should first attempt automatic range detection (see "Detect the focus range" on page 39). If automatic detection fails, then use the manual mode.

- Select the flowcell, then find the beads on the slide
- 1. Close the front doors of the SOLiD[™] 3 Plus Analyzer. Open the Imager window by choosing Window → Imaging System.
- 2. Select the Show Flowcell box in the bottom left hand corner of the Imager window, then choose the number of the flowcell to set (Flowcell 1 or Flowcell 2; see Figure 76).

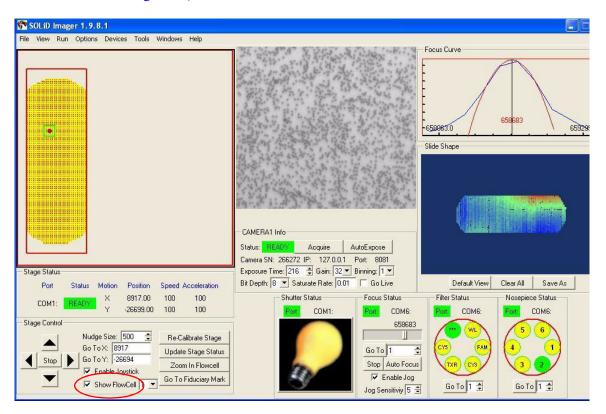
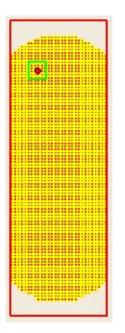
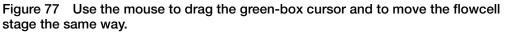




Figure 76 Click Show Flowcell to find the beads on the slide.

- **3.** From the View menu, choose **Stage Template**, then navigate to the C:\Runs directory. Find the folder in the Runs directory that corresponds to the run just set up, then choose the .STG file for the run. Choosing Stage Template and the .STG file superimposes the slide layout on the Imager screen.
- **4.** Use the mouse to drag the green-box cursor to a position on the upper-left side of the slide. Dragging the green-box cursor moves the flowcell stage to that corner of the slide (see Figure 77 on page 104).

Find the focal range 1. Set the Filter Status to WL (white light; see Figure 78).

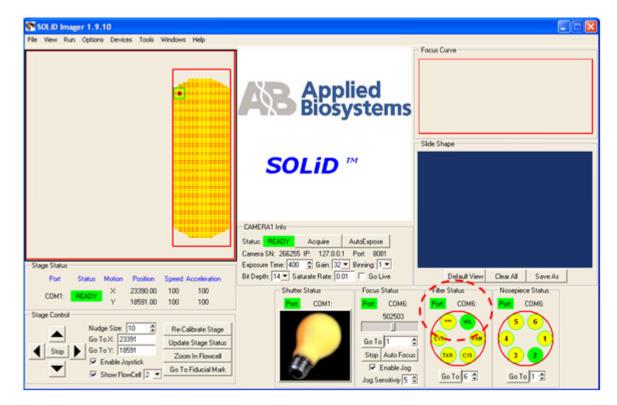


Figure 78 Click WL (white light) to set the Filter Status.

2. In the Imager window, click the AutoFocus button, then wait about 20 seconds for the Imager to focus on the slide (see Figure 79). The Camera 1 indicator displays BUSY while autofocus is running. When the Camera 1 indicator displays READY, click AutoExpose, then wait for the Camera 1 indicator to show READY. Click AutoFocus so that the Imager can focus again (this time with correct exposure settings). Note where the focus peak falls in the focus range by looking at the value that displays where the peak is located.

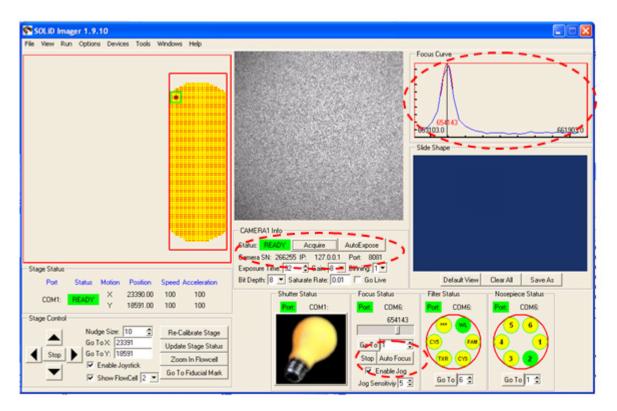


Figure 79 Click **AutoFocus** and **AutoExpose** so that the focus peak falls in the focus range.

3. When the Imager displays READY, click the **Acquire** button, then examine the image on the screen (see Figure 80 on page 106).

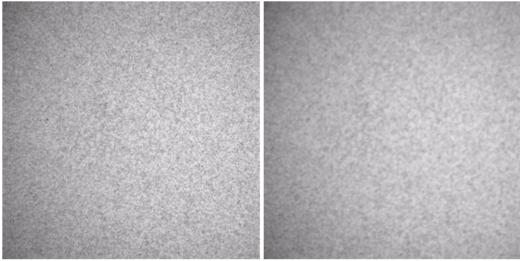
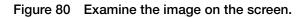



Image out of focus

- **Note:** To zoom on the image, double-left-click the mouse. To un-zoom, double-right-click. To drag the image, hold down the left mouse button.
- **4.** If the image is *in* focus, proceed to "Calculate, then set the focal range" on page 110. If the image is *out* of focus, proceed to step 5.
- **5.** Check the **Go Live** check box in the Imager window. By checking the **Go Live** check box, a live image of the flowcell displays. You can use this image to manually find the focal range (see Figure 81 on page 107).

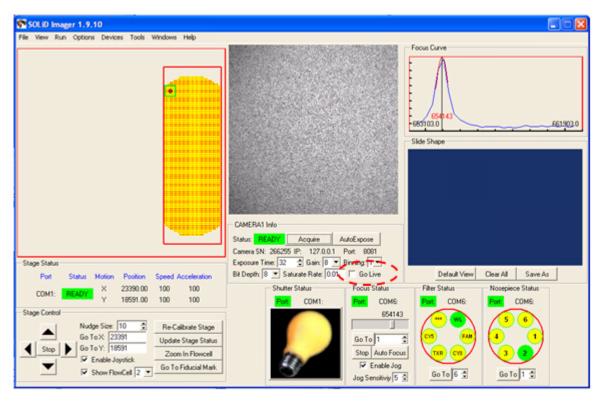
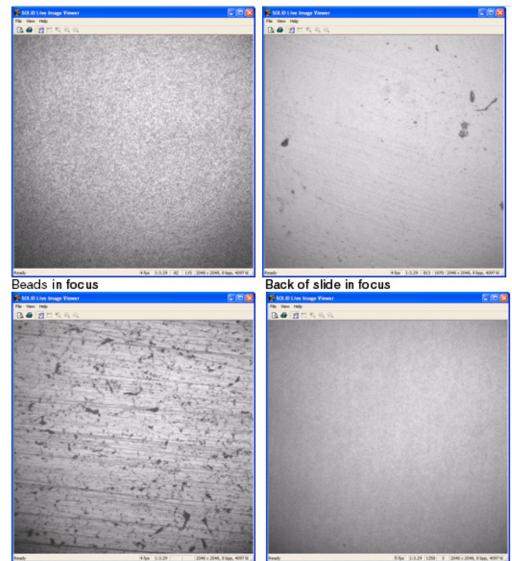


Figure 81 Check **Go Live** to manually find the focal range.

6. Click the focus slider bar in the Imager window. A black box appears (see Figure 82 on page 108).

SOLID Imager 1.9.10 File View Run Options Devices Tools Windows Help		
	CAMERA1 Info Status: READY Acquire AutoExpose Camera SN: 256255 IP: 127.00.1 Port: 8081	9930
Stage Status Port Status Motion Position Speed Acceleration	Exposure Time: 23	
COM1: READY X 26651.00 100 100 Y 26812.00 100 100	Shutter Status Focus Status Filter Status Nosepiece Status Port COM1: Port COM6: Port COM6: Port COM6:	
Stage Control Nudge Size: 10	653334 5 Go To T 1 Stop Auto Focus TX8 F Enable Jog Go To 6 Jog Sensitivity 5 Go To 6	


Figure 82 Use the black box to change the focal distance.

- 7. When the black box is visible, hold down the **Ctrl** key and hold down either the **right** or **left** arrow key on the keyboard. Holding down **Ctrl** and the arrow key (**right** or **left** arrow) simultaneously changes the focal distance in 300-count intervals.
- 8. While watching the live image on the screen, scan the focal distance:
 - Use the **Ctrl**+*right* arrow keys to scan the focal distance upward. When the live image is in focus, release the keys, then record the value shown in the black box of the Imager window.
 - If an in-focus image *cannot* be found, then scan downward using the **Ctrl**+*left* arrow keys, past the starting point, while watching the live image on the screen. When the live image is in focus, release the keys, then record the value shown in the black box of the Imager window.

The value in the black box of the imager window when the image is in focus is the *nominal Z distance*.

For examples of in-focus images, see Figure 83 on page 109.

Back of heater block in focus

Reflection of beads in focus

Figure 83 Examples of in-focus images.

9. Uncheck the **Go Live** check box in the Imager window to close the live-image window.

Calculate, then set the focal range

1. When the image is in focus, record the value of the *Z* distance in the Focus Status pane. This is the *nominal Z distance* for this flowcell. Be sure to record the correct *Z* distance value, not the value in the GoTo window (see Figure 84).

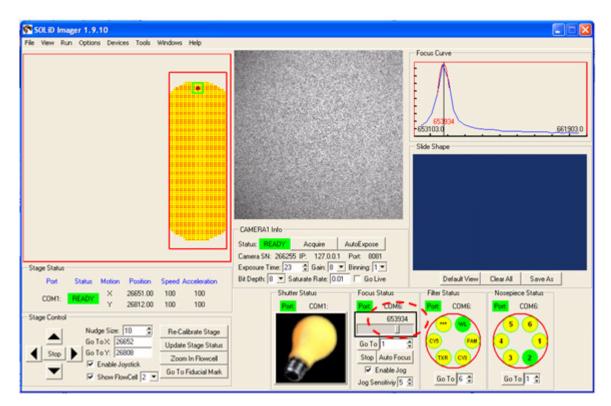


Figure 84 Record the nominal Z distance.

- **2.** Choose **Options > Focusing**.
- Ensure that Do auto-exposure with auto-focus is checked. Enter a value 5000 *less than* the nominal Z distance for Z Min. Enter a value 5000 *greater than* the nominal Z distance for Z Max. Enter 30 for the Number of Steps and choose Histogram Range from the drop-down menu in the Focusing Method Selection pane (see Figure 85 on page 111).
 - () IMPORTANT! Leave the Auto-Focus Options window *open* on the Desktop. Do *not* click the **Save to File** button. Values entered in the Focusing box are used by the Imager software even if the values are not saved.

💏 Auto-Focus	Options		
— Focus Settings—			
	Flowcell 1	Flowcell 2	Outside Flowcells
Z Min:	653103	648830	652503
Z Max:	663103	658830	662503
	Revert to Saved	Revert to Saved	Revert to Saved
	Save to File	Save to File	Save to File
Number of Steps:	30		
✓ Do auto-exposure with auto-focus			
- Focusing Method Selection			
Histogram Range			

Figure 85 Enter auto-focus options.

- 4. Use the mouse to move the green box to the upper-left corner of the slide.
- 5. In the Imager window, click the Autofocus button, then wait about 20 seconds for the Imager to focus on the slide. The Camera 1 indicator displays BUSY while the autofocus is running. When the Camera 1 indicator displays READY, click AutoExpose and wait for the Camera 1 indicator to display READY. Click AutoFocus so that the Imager can focus again (this time with the correct exposure settings).
- **6.** When the Imager displays READY, click the **Acquire** button, then confirm that the image is in focus.
- **7.** Record the *Z* distance value from the Focus Status pane (see Figure 86 on page 112).

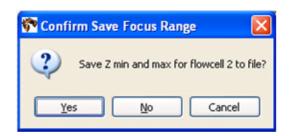
SOLID Imager 1.9.10 File View Run Options Devices Tools Windows Help			
	CAMERA) Info Sudue: READT Acquire AutoExpose Camera SR: 200555-P 12240-04 Per: Toot	Focus Curve 653834 653103.0 Silde Shape	681903.0
Stage Status Port Status Motion Position Speed Acceleration	Exposure Time: 23 🔮 Gain: 8 💌 Binning: 1 💌 Bit Depth: 8 💌 Saturate Rate: 0.01 🛛 🖓 Go Live	Default View	Clear All Save As
COM1: READY: X 25651.00 100 100 Y 25812.00 100 100	Shutter Status Focus Status Port COM1: Port COM6:	Filter Status	Nosepiece Status Port COM6:
Stage Control Stage Control Stage Control Stop Go To X: 26652 Update Stage Update Stage Status Zoom In Flowcell To Show FlowC	653934		

Figure 86 Record the *Z* distance value.

- **8.** Open Notepad, then record the measured focal value for the spot on the slide that has been focussed.
- **9.** Repeat steps 4 to 8 for the top right, bottom left, bottom right, and center of the slide. The range of these values should not exceed 5000 units. Calculate the average value of the highest and lowest spots and record this value in Notepad (see Figure 87 on page 113).
 - () IMPORTANT! If the range of these values exceeds 5000 units, the flowcell is out of alignment. Call your Applied Biosystems Field Service Engineer to align the flowcell.

📕 Untitled - Notepad	- II X
File Edit Format View Help	
653830 653930 648790 649250 651550	4
highest = 653930 lowest = 648790 average of highest and lowest = 65136	50
set range +/- 5000 range = 646360 - 656360 	
T	▼

Figure 87 Record the average focal value in Notepad.


10. Subtract 5000 counts from the calculated average, then enter that value in the *Z* Min box. Add 5000 counts to the average, then enter that value into the *Z* Max box. Confirm that the Number of Steps is **30**. Click **Save to File** (see Figure 88).

💏 Auto-Focus	Options		
— Focus Settings—			
	Flowcell 1	Flowcell 2	Outside Flowcells
Z Min:	653103	646360	652503
Z Max:	663103	65636 0	662503
	Revert to Saved	Revert to Saved	Revert to Saved
	Save to File	Save to File	Save to File
Number of Steps: 30			
Do auto-exposure with auto-focus			
- Focusing Method Selection			
Histogram Range 📃			

Figure 88 Enter the focus settings.

11. Click Yes when the warning displays (see Figure 89 on page 114).

Figure 89 Click Yes when the Save Focus Range Warning displays.

- 12. When the Flowcell Selection window appears, choose the number of the flowcell (1 or 2) that has just been measured and click OK. The focal range is saved.
- **13.** (Optional) Repeat all previous steps starting from "Select the flowcell, then find the beads on the slide" on page 103.

Shut down the SOLiD[™] 3 Plus Analyzer

The instrument can be shut down using the Instrument Shutdown wizard in the ICS. For instruments that have UPS, in the event of power failure, an uninterrupted power supply (UPS) is activated, UPS systematically shuts down the instrument: Analysis jobs are stopped and Linux is shut down. Slides are preserved in Storage Buffer.

Required Table 35 Required equipment: Shut down the instrument

	100	Janoa	
eq	uip	ment	

Item	Source
UPS	Applied Biosystems 4397781 (North America)
	4393695 (International)

- 1. Open the Instrument Shutdown wizard by choosing Wizards → Instrument Shutdown.
- **2.** Follow the instructions in the wizard.

Reset the robot position

The Robot standby script sends the robot back to home position.

- **1.** Open the Utility Scripts menu by choosing **Tools** > **Utility Scripts**.
- 2. Select Robot standby.
- 3. Select Run Script.

Store the slide in a flowcell

The Store flowcell script fills the flowcell with Storage Buffer.

- 1. Open the Utility Scripts menu by choosing Tools > Utility Scripts.
- 2. Select Store flowcell.
- 3. Select Run Script.

Appendix B Supplemental Procedures Store the slide in a flowcell

On-Instrument Reagent Volumes and Reagent Strip Layouts

This appendix covers:

Recommended fill volumes for on-instrument reagents.	118
Fragment sequencing (35 or 50 bp)	118
Mate-pair sequencing (25, 35, or 50 bp)	118
Barcode sequencing (5 bp)	119
Workflow analysis (WFA)	119
Reagent strip layouts	120
Fragment sequencing	120
Mate Pair Tag 1 sequencing	120
Mate Pair Tag 2 sequencing	121
Barcode sequencing	121
Workflow analysis (WFA)	122

Recommended fill volumes for on-instrument reagents

Fragment sequencing	Table 36 Fill volumes for fr	le 36 Fill volumes for fragment sequencing (35 or 50 bp) Volume (mL)					
(35 or 50 bp)							
		35	bp	50 bp			
		1 Flowcell	2 Flowcells	1 Flowcell	2 Flowcells		
	Instrument Buffer	2157	4125	2949	5710		
	Storage Buffer	343	587	423	748		
	Cleave 1 Solution	122	221	167	311		
	Cleave 2 Solution	122	221	167	311		
	Reset Buffer	91	163	91	163		
	Ligase Buffer	42	74	56	101		
	Phosphatase Buffer	26	41	33	55		
	Imaging Buffer	82	142	107	191		

Mate-pair sequencing (25, 35, or 50 bp)

Volume per tag (mL) 25 bp 35 bp 50 bp 1 Flowcell 2 Flowcells 1 Flowcell 2 Flowcells 1 Flowcell 2 Flowcells Instrument Buffer Storage Buffer Cleave 1 Solution Cleave 2 Solution **Reset Buffer** Ligase Buffer Phosphatase Buffer Imaging Buffer

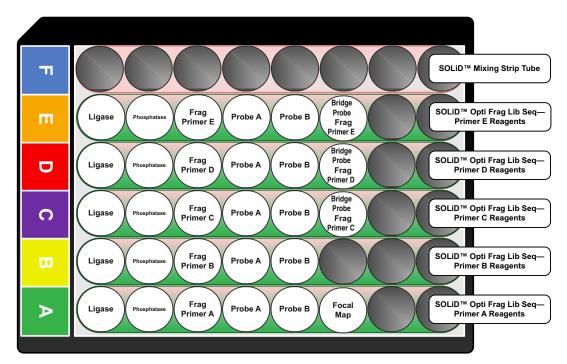
Table 37 Fill volumes for mate-pair sequencing (25, 35, or 50 bp)

Barcode sequencing (5 bp)

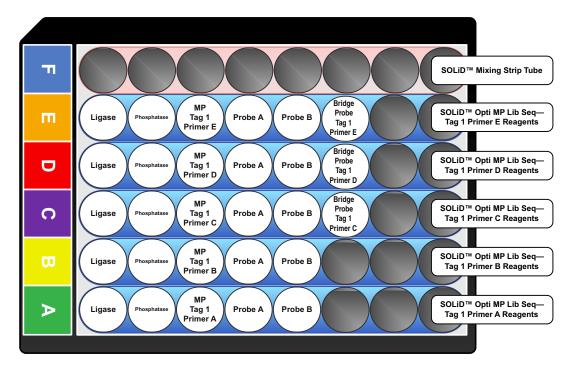
Table 38 Fill volumes for barcode sequencing (5 bp)

	Volume (mL)				
	1 Flowcell	2 Flowcells			
Instrument Buffer	638	1088			
Storage Buffer	189	279			
Cleave 1 Solution	32	41			
Cleave 2 Solution	32	41			
Reset Buffer	91	163			
Ligase Buffer	15	18			
Phosphatase Buffer	12	14			
Imaging Buffer	33	43			

Workflow analysis (WFA)

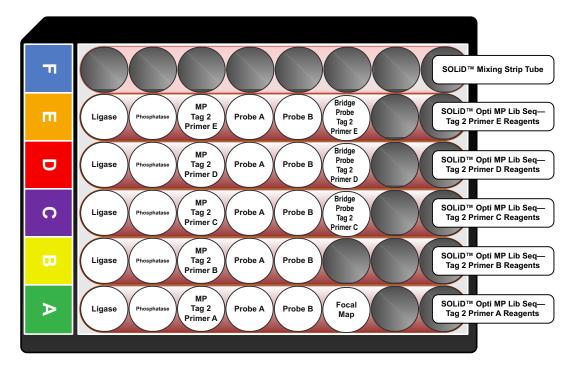

Table 39 Fill volumes for workflow analysis (WFA)

	Volume (mL)				
	1 Flowcell	2 Flowcells			
Instrument Buffer	294	400			
Storage Buffer	116	134			
Cleave 1 Solution	0	0			
Cleave 2 Solution	0	0			
Reset Buffer	43	67			
Ligase Buffer	12	12			
Phosphatase Buffer	0	0			
Imaging Buffer	26	30			

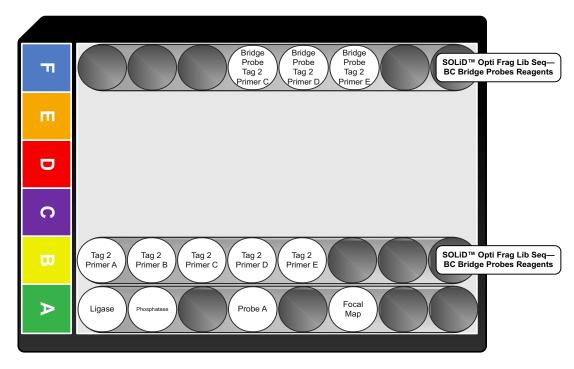


Reagent strip layouts

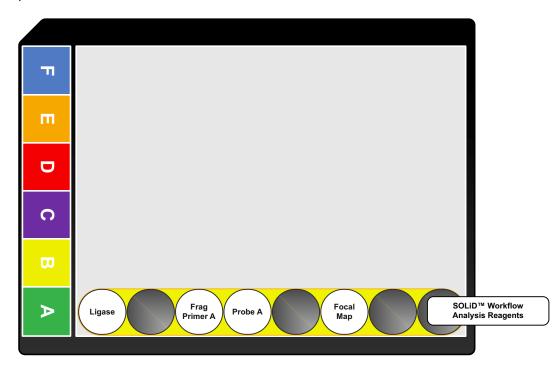
Fragment sequencing



Mate Pair Tag 1 sequencing



Mate Pair Tag 2 sequencing



Barcode sequencing

Workflow analysis (WFA)

D

Instrument Process Times

This appendix covers:

Times for individual processes	124
Times for entire processes	125

Times for individual processes

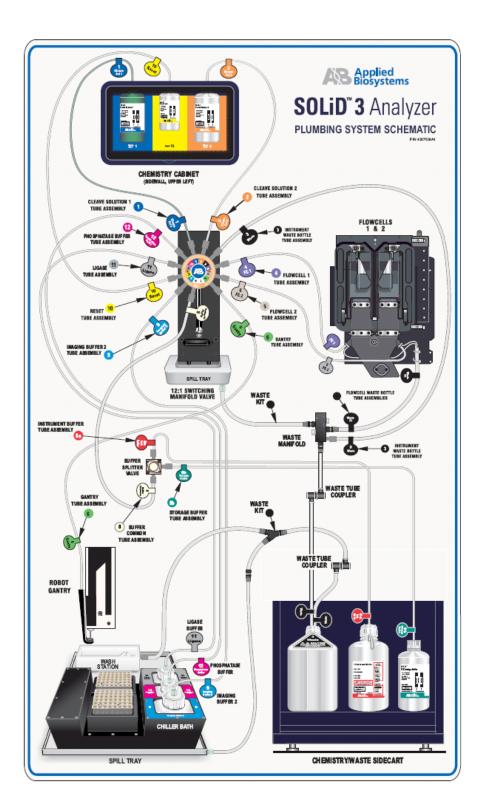
Table 40 Times for individual processes

Process	Estimated Time (h)	Steps	Estimated time per primer (h)
Focal Map	~2 to 3	Reset	
		P2 Label	
		Image	
Sequencing Primers	~3 to 4	Reset	~3 to 4
1 & 2 and Ligation		Prime	(1 cycle or 5 bp)
		Ligate	~15 to 17
		Dark Ligate	(5 cycles or 25 bp)
		Phosphatase	~18 to 22
		Image	(7 cycles or 35 bp)
		Cleave	~28 to 33
			(10 cycles or 50 bp)
Sequencing Primers 3, 4, & 5 and Ligation	~4 to 5	Reset	~4 to 5
5, 4, & 5 and Ligation		Prime	(1 cycle or 5 bp)
		Bridge Probe	~16 to 18
		Ligate	(5 cycles or 25 bp)
		Dark Ligate	~19 to 23
		Phosphatase	(7 cycles or 35 bp)
		Image	~29 to 34
		Cleave	(10 cycles or 50 bp)
Ligation cycle	~2.5 to 3	Ligate	
(without priming)		Dark Ligate	
		Phosphatase	
		Image	
		Cleave	

Times for entire processes

Process	Total Runtime [‡]
Workflow Analysis (WFA)	~4 to 5 hours
Fragment (35 bp)	~4 to 4.5 days
Fragment (50 bp)	~6 to 7 days
Mate Pair (2 × 25 bp)	~7 to 8 days
Mate Pair (2 x 35 bp)	~8 to 9 days
Mate Pair (2 × 50 bp)	~13 to 14 days
Barcode (5 bp)	~1 day

Table 41 Times for entire processes


‡ The estimated time is for a dual slide run. Estimated times may vary due to differences in imaging time.

Appendix D Instrument Process Times Times for entire processes

SOLiD[™] 3 Plus Analyzer Plumbing System Schematic

Checklists and workflow tracking forms

This appendix covers:

- Workflow checklists: set up a workflow analysis or sequencing run 130
- Workflow tracking: set up and perform a workflow analysis (WFA) run.... 131
- Workflow tracking: set up a sequencing run (1-well)..... 132
- Workflow tracking: set up a sequencing run (4-well)..... 133
- Workflow tracking: set up a sequencing run (8-well)..... 134

Workflow checklists: set up a workflow analysis or sequencing run

	Equipment	Reagents	Preparation Steps
Deposit the beads	Covaris [™] S2 System SOLiD [™] Bead Concentration Chart SOLiD [™] Deposition Chamber SOLiD [™] Opti Slide Carrier NanoDrop [™] ND-1000 6 Tube magnetic rack Incubator (37 °C) Pipettors	1X TEX Buffer Deposition Buffer Double distilled filtered water 1.5-mL LoBind tubes 3-mm adhesive disks Filtered pipettor tips	Clean and dry the SOLiD™ Deposition Chamber overnight
Install on-instrument reagents	SOLiD™ 3 Plus Analyzer 8-L reagent bottle Graduated cylinder Magnetic stir bar Pipettors	10× Instrument Buffer Storage Buffer 1× T4 DNA Ligase Buffer (Parts 1 and 2) Phosphatase Buffer Imaging Buffer (Parts 1 and 2) Cleave Solution 1 Cleave Solution 2 (Parts 1 and 2) Reset Buffer Glycerol Double-distilled water	
Install slide(s)	SOLiD™ 3 Plus Analyzer Pipettors Allen wrench SOLiD™ Slide Storage Chamber (optional)	Deposition Buffer Overlay Buffer Filtered pipettor tips 70% ethanol Kimwipes® Slide Storage Buffer (optional)	
Install reagent strip(s)	Tabletop centrifuge	96-well square-well storage plate	Thaw appropriate reagent strip(s)

Workflow tracking: set up and perform a workflow analysis (WFA) run

Slide:							Date:	
Run:						Date:		
Sample Name								
•		San	nple information	ation (pre-\	WFA)			
A600			Ī	••	-			
Concentration (beads/µL)								
Deposition Volume (µL)								
			WFA	report				
P2_rfu								
P2_Exp								
P2_Gain								
P1#								
P2#								
P2#/P1# ratio								
N2S								
On Axis								
Titration Metric								
		Sam	ple informa	tion (post-	WFA)			
P2 Concentration (beads/µL)								
Volume Left								
Beads Left								
			Lot nu	mbers				
Slide								
Deposition Buffer								
Overlay Buffer								
Instrument Buffer Storage Buffer								
T4 Ligase Buffer Part	+ 1							
T4 Ligase Buffer Part								
Phosphatase Buffer								
Imaging Buffer Part 1								
Imaging Buffer Part 2								
Cleave Solution 1								
Cleave Solution 2 Pa								
Cleave Solution 2 Par								
Reset Buffer								
Slide Storage Buffer								
Workflow Analysis								
Reagents								

Workflow tracking: set up a sequencing run (1-well)

Slide:	Date:	
Run:		Date:
Sample Name		
	Sample information	1
A600		
Concentration		
(beads/µL)		
Deposition Volume		
(μL)		
Volume Left		
Beads Left		
	Lot numbers	
Slide		
Deposition Buffer		
Overlay Buffer		
Instrument Buffer		
Storage Buffer		
T4 Ligase Buffer Part 1		
T4 Ligase Buffer Part 2		
Phosphatase Buffer		
Imaging Buffer Part 1		
Imaging Buffer Part 2		
Cleave Solution 1		
Cleave Solution 2 Part 1		
Cleave Solution 2 Part 2		
Reset Buffer		
Slide Storage Buffer		
Fragment Library Seq Ki	<u> </u>	
Frag Lib Seq – Primer A		
Frag Lib Seq – Primer B		
Frag Lib Seq – Primer C		
Frag Lib Seq – Primer D		
Frag Lib Seq – Primer E		
Mate-Paired Library Seq		
MP Lib Seq - Tag 1 Prim		
MP Lib Seq – Tag 1 Prim MP Lib Seq – Tag 1 Prim	er B	
MP Lib Seq – Tag 1 Prim		
MP Lib Seq – Tag 1 Prim		
MP Lib Seq – Tag 2 Prim		
MP Lib Seq - Tag 2 Prim		
MP Lib Seq – Tag 2 Prim		
MP Lib Seq - Tag 2 Prim		
MP Lib Seq – Tag 2 Prim	er F	
Frag Barcode Library Se		
BC Lib Seq – BC Probe	<u>1 · ···</u>	
BC Lib Seq – BC Primers		
BC Lib Seq – BC Bridge		
Probes		

Workflow tracking: set up a sequencing run (4-well)

Slide:							Date:		
Run:									
Samples 1 to 4									
Sample Name									
			Sample infor	mation					
A600									
Concentration									
(beads/µL)									
Deposition Volume									
(μL)									
Volume Left									
Beads Left									
			Lot numb	ers					
Slide									
Deposition Buffer									
Overlay Buffer									
Instrument Buffer									
Storage Buffer									
T4 Ligase Buffer Part 1									
T4 Ligase Buffer Part 2									
Phosphatase Buffer									
Imaging Buffer Part 1									
Imaging Buffer Part 2									
Cleave Solution 1		-							
Cleave Solution 2 Part									
Cleave Solution 2 Part 2	2								
Reset Buffer Slide Storage Buffer									
Fragment Library Seg K	·:+								
Frag Lib Seq – Primer A									
Frag Lib Seq – Primer B									
Frag Lib Seq - Primer C									
Frag Lib Seq – Primer D									
Frag Lib Seq – Primer E									
Mate-Paired Library Se									
MP Lib Seq – Tag 1 Prir									
MP Lib Seq – Tag 1 Prir									
MP Lib Seq – Tag 1 Prir									
MP Lib Seq – Tag 1 Primer D									
MP Lib Seq – Tag 1 Prir	mer E								
MP Lib Seq – Tag 2 Prir	mer A								
MP Lib Seq – Tag 2 Prir									
MP Lib Seq – Tag 2 Prir									
MP Lib Seq – Tag 2 Prir									
MP Lib Seq - Tag 2 Prir									
Frag Barcode Library Se									
BC Lib Seq – BC Probe									
BC Lib Seq – BC Prime									
BC Lib Seq – BC Bridge	Э								
Probes									

Workflow tracking: set up a sequencing run (8-well)

Slide:				Date:	
Run:				Date:	
Samples 1 to 4					
Sample Name					
Sample Information					
A600					
Concentration (beads/µL)					
Deposition Volume (µL)					
Volume Left					
Beads Left					
Samples 5 to 8					
Sample Name		•			
A600		Sample information	T		[
Concentration (beads/µL)					
Deposition Volume (µL)					
Volume Left		+	1		
Beads Left		+	1		
		Lot numbers			
Slide		Lot humboro			
Deposition Buffer					
Overlay Buffer					
Instrument Buffer					
Storage Buffer					
Ligase Buffer					
Phosphatase Buffer					
Imaging Buffer Part 1					
Imaging Buffer Part 2					
Cleave Solution 1					
Cleave Solution 2 Part 1					
Cleave Solution 2 Part 2					
Reset Buffer					
Slide Storage Buffer					
Fragment Library Seq Kit					
Frag Lib Seq – Primer A					
Frag Lib Seq – Primer B					
Frag Lib Seq – Primer C					
Frag Lib Seq – Primer D					
Frag Lib Seq – Primer E					
Mate-Paired Library Seq Kit					
MP Lib Seq – Tag 1 Primer A					
MP Lib Seq – Tag 1 Primer B					
MP Lib Seq – Tag 1 Primer C					
MP Lib Seq – Tag 1 Primer D					
MP Lib Seq – Tag 1 Primer E					
MP Lib Seq – Tag 2 Primer A MP Lib Seq – Tag 2 Primer B					
MP Lib Seq – Tag 2 Primer C MP Lib Seq – Tag 2 Primer D					
MP Lib Seq – Tag 2 Primer E					
Frag Barcode Library Seq Kit					
BC Lib Seq – BC Probe					
BC Lib Seq – BC Primers					
BC Lib Seq – BC Bridge Probes					

The Covaris[™] S2 System

This appendix covers:

Operation notes	136
Fill the tank	136
Degas the water	136
Set the chiller	136
Perform required maintenance of the Covaris [™] S2 System	136
Covaris [™] S2 Programs	136
Covalent Declump 1	136
Covalent Declump 3	137

Operation notes

Fill the tank	Fill the tank with fresh deionized water to the proper fill line. The water should cover the visible part of the tube.		
Degas the water	Degas the water for 30 minutes. To maintain degassed water, keep the pump continuously on during operation and sample processing.		
Set the chiller	Set the chiller temperature to between 2 to 5 °C to ensure that the temperature reading in the water bath displays 5 °C. The circulated water chiller should be supplemented with 20% ethylene glycol.		
Perform required maintenance of the Covaris [™] S2 System	The Covaris [™] S2 System requires regular maintenance to work properly. Perform the tasks in the table below (see Table 42): Table 42 Required maintenance of the Covaris [™] S2 System		
	Required maintenance task	Frequency to perform task	
	Degas water for 30 minutes prior to use	Before every use	
	Change water	Daily	
Clean with bleach Every two weeks		Every two weeks	

Covaris[™] S2 Programs

Covalent Declump 1

Table 43Covalent Declump 1: 1 cycle Treatment 1 followed by 1 cycleTreatment 2

	Treatment 1	Treatment 2
Duty Cycle	2%	5%
Intensity	6	9
Cycles/Burst	100	100
Time	5 sec	30 sec
Target wattage power performance estimate (W) [‡]	4	15

‡ Not programmed.

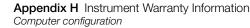
Covalent Declump 3

-

Table 44Covalent Declump 3: 3 cycles Treatment 1 followed by 1 cycleTreatment 2

	Treatment 1	Treatment 2
Duty Cycle	2%	5%
Intensity	6	9
Cycles/Burst	100	100
Time	5 sec	30 sec
Target wattage power performance estimate (W) [‡]	4	15

‡ Not programmed.


Appendix G The Covaris[™] S2 System *Covaris[™] S2 Programs*

Instrument Warranty Information

This appendix covers:

Computer configuration	140
Limited product warranty	140
Warranty period effective date	141
Warranty claims	141
Warranty exceptions	141
Warranty limitations	142
Damages, claims, and returns	143

Computer configuration

Applied Biosystems supplies or recommends certain configurations of computer hardware, software, and peripherals for use with its instrumentation. Applied Biosystems reserves the right to decline support for or impose extra charges for supporting nonstandard computer configurations or components that have not been supplied or recommended by Applied Biosystems. Applied Biosystems also reserves the right to require that computer hardware and software be restored to the standard configuration prior to providing service or technical support. For systems that have built-in computers or processing units, installing unauthorized hardware or software may void the Warranty or Service Plan.

Limited product warranty

Applied Biosystems warrants that all standard components of the SOLiD[™] 3 Plus Analyzer, IKA[®] ULTRA-TURRAX[®] Tube Drive, the Covaris[™] S2 System, APC UPS, and the recirculating chiller will be free of defects in materials and workmanship for a period of one (1) year from the date the warranty period begins. Applied Biosystems will repair or replace, at its discretion, all defective components during this warranty period. Applied Biosystems warrants the Genomic Solutions HydroShear[®] DNA Shearing Device will be free of defects in materials and workmanship for a period of one (1) year from the date the warranty period begins. Applied Biosystems will replace a defective HydroShear[®] DNA Shearing Device during the warranty period. The following parts of the HydroShear[®] DNA Shearing Device are use- replaceable and not covered by the warranty on the HydroShear® DNA Shearing Device: shearing assembly, syringes, syringe adapters, syringe shields, and output tubing. Applied Biosystems reserves the right to use new, repaired, or refurbished instruments or components for warranty and post-warranty service agreement replacements. Repair or replacement of products or components that are under warranty does not extend the original warranty period.

Applied Biosystems warrants that all optional accessories supplied with its SOLiD[™] 3 Plus Analyzer such as peripherals, printers, and special monitors, will be free of defects in materials and workmanship for a period of ninety (90) days from the date the warranty begins. Applied Biosystems will repair or replace, at its discretion, defective accessories during this warranty period. After this warranty period, Applied Biosystems will pass on to the buyer, to the extent that it is permitted to do so, the warranty of the original manufacturer for such accessories.

With the exception of consumable and maintenance items, replaceable products or components used on or in the instrument are themselves warranted to be free of defects in materials and workmanship for a period of ninety (90) days.

Applied Biosystems warrants that chemicals and other consumable products will be free of defects in materials and workmanship when received by the buyer, but not thereafter, unless otherwise specified in documentation accompanying the product.

Applied Biosystems warrants that for a period of ninety (90) days from the date the warranty period begins, the tapes, diskettes, or other media bearing the operating software of the product, if any, will be free of defects in materials and workmanship under normal use. If there is a defect in the media covered by the above warranty and the media is returned to Applied Biosystems within the ninety (90) day warranty period, Applied Biosystems will replace the defective media.

Unless indicated herein, Applied Biosystems makes no warranty whatsoever in regard to products or parts furnished by third parties, including but not limited to the non-APC- branded UPS or APC UPS, Covaris S2, Genomic Solutions HydroShear[®] DNA Shearing Device, Recirculating Chiller, and IKA ULTRA-TURRAX purchased or obtained from a third party. Such products or parts will be subject to the warranties, if any, of their respective manufacturers to the extent they are 'transferable or otherwise available to Applied Biosystems' buyer.

Applied Biosystems at its sole discretion may refuse to provide buyer with support or service for buyer's use of Covaris S2 in a method not described in a SOLiDTM System protocol.

Applied Biosystems does not warrant that the operation of the instrument or its operating software will be uninterrupted or be error-free.

Warranty period effective date

Any applicable warranty period under these sections begins on the earlier of the date of installation or ninety (90) days from the date of shipment for hardware and software installed by Applied Biosystems personnel. For all hardware and software installed by the buyer or anyone other than Applied Biosystems, and for all other products, the applicable warranty period begins the date the product is delivered to the buyer.

Warranty claims

Warranty claims must be made within the applicable warranty period, or, for chemicals or other consumable products, within thirty (30) days after receipt by the buyer unless otherwise specified in the documentation accompanying the product.

Warranty exceptions

The above warranties do not apply to defects resulting from misuse, neglect, or accident, including without limitation: operation with incompatible solvents or samples in the system; operation outside of the environmental or use specifications or not in conformance with the instructions for the instrument system, software, or accessories; improper or inadequate maintenance by the user; installation of software or interfacing, or use in combination with software or products, not supplied or authorized by Applied Biosystems; modification or repair of the product not authorized by Applied

Biosystems; relocation or movement of the instrument by buyer or by any third party not acting on behalf of Applied Biosystems; or intrusive activity, including without limitation, computer viruses, hackers or other unauthorized interactions with instrument or software that detrimentally affects normal operations.

Parts in contact with any liquid are considered wetted and may be deemed userreplaceable and not be covered by the above warranties, including, but not limited to, seals, filters, gaskets, shearing assemblies, valves, syringes, syringe adapters, syringe shields, and output tubing.

Warranty limitations

THE FOREGOING PROVISIONS SET FORTH APPLIED BIOSYSTEMS' SOLE AND EXCLUSIVE REPRESENTATIONS, WARRANTIES, AND OBLIGATIONS WITH RESPECT TO THE PRODUCTS WARRANTIED HEREIN, AND APPLIED BIOSYSTEMS MAKES NO OTHER WARRANTY OF ANY KIND WHATSOEVER, EXPRESSED OR IMPLIED, INCLUDING WITHOUT LIMITATION, WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WHETHER ARISING FROM A STATUTE OR OTHERWISE IN LAW OR FROM A COURSE OF DEALING OR USAGE OF TRADE, ALL OF WHICH ARE EXPRESSLY DISCLAIMED.

THE REMEDIES PROVIDED HEREIN ARE THE BUYER'S SOLE AND EXCLUSIVE REMEDIES. WITHOUT LIMITING THE GENERALITY OF THE FOREGOING, TO THE FULL EXTENT ALLOWED BY LAW, IN NO EVENT SHALL APPLIED BIOSYSTEMS BE LIABLE, WHETHER IN CONTRACT, TORT, WARRANTY, OR UNDER ANY STATUTE (INCLUDING WITHOUT LIMITATION, ANY TRADE PRACTICE, UNFAIR COMPETITION, OR OTHER STATUTE OF SIMILAR IMPORT) OR ON ANY OTHER BASIS, FOR DIRECT, INDIRECT, PUNITIVE, INCIDENTAL, MULTIPLE, CONSEQUENTIAL, OR SPECIAL DAMAGES SUSTAINED BY THE BUYER OR ANY OTHER PERSON OR ENTITY, WHETHER OR NOT FORESEEABLE AND WHETHER OR NOT APPLIED BIOSYSTEMS IS ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, INCLUDING WITHOUT LIMITATION, DAMAGES ARISING FROM OR RELATED TO LOSS OF USE, LOSS OF DATA, FAILURE OR INTERRUPTION IN THE OPERATION OF ANY EQUIPMENT OR SOFTWARE, DELAY IN REPAIR OR REPLACEMENT, OR FOR LOSS OF REVENUE OR PROFITS, LOSS OF GOOD WILL, LOSS OF BUSINESS, OR OTHER FINANCIAL LOSS OR PERSONAL INJURY OR PROPERTY DAMAGE.

NO AGENT, EMPLOYEE, OR REPRESENTATIVE OF APPLIED BIOSYSTEMS HAS ANY AUTHORITY TO MODIFY THE TERMS OF THIS LIMITED WARRANTY STATEMENT OR TO BIND APPLIED BIOSYSTEMS TO ANY AFFIRMATION, REPRESENTATION, OR WARRANTY CONCERNING THE PRODUCT THAT IS NOT CONTAINED IN THIS LIMITED WARRANTY STATEMENT, AND ANY SUCH MODIFICATION, AFFIRMATION, REPRESENTATION, OR WARRANTY MADE BY ANY AGENT, EMPLOYEE, OR REPRESENTATIVE OF APPLIED BIOSYSTEMS WILL NOT BE BINDING ON APPLIED BIOSYSTEMS, UNLESS IN A WRITING SIGNED BY AN EXECUTIVE OFFICER OF APPLIED BIOSYSTEMS.

THIS WARRANTY IS LIMITED TO THE BUYER OF THE PRODUCT FROM APPLIED BIOSYSTEMS AND IS NOT TRANSFERABLE.

Some countries or jurisdictions limit the scope of or preclude limitations or exclusion of warranties, of liability, such as liability for gross negligence or willful misconduct, or of remedies or damages, as or to the extent set forth above. In such countries and jurisdictions, the limitation or exclusion of warranties, liability, remedies or damages set forth above shall apply to the fullest extent permitted by law, and shall not apply to the extent prohibited by law.

Damages, claims, and returns

- **Damages** If shipping damage to the product is discovered, contact the shipping carrier and request inspection by a local agent. Secure a written report of the findings to support any claim. Do not return damaged goods to Applied Biosystems without first securing an inspection report and contacting Applied Biosystems Technical Support for a Return Authorization (RA) number.
 - **Claims** After a damage inspection report is received by Applied Biosystems, Applied Biosystems will process the claim unless other instructions are provided.
 - **Returns** Do not return any material without prior notification and authorization.

If for any reason it becomes necessary to return material to Applied Biosystems, contact Applied Biosystems Technical Support or your nearest Applied Biosystems subsidiary or distributor for a return authorization (RA) number and forwarding address. Place the RA number in a prominent location on the outside of the shipping container, and return the material to the address designated by the Applied Biosystems representative.

Applied Biosystems End User Software License Agreement

This appendix covers:

About this agreement	146
Third party products	146
Title	147
Copyright	147
License	147
Limited warranty and limitation of remedies	150
Limitation of liability	151
General	152

About this agreement

This appendix is the Applied Biosystems End User Software License Agreement for Instrument Operating and Associated Bundled Software and Limited Product Warranty.

NOTICE TO USER: PLEASE READ THIS DOCUMENT CAREFULLY. THIS IS THE CONTRACT BETWEEN YOU AND APPLIED BIOSYSTEMS, LLC, REGARDING THE OPERATING SOFTWARE FOR YOUR APPLIED BIOSYSTEMS WORKSTATION OR OTHER INSTRUMENT AND BUNDLED SOFWARE INSTALLED WITH YOUR OPERATING SOFTWARE. THIS AGREEMENT CONTAINS WARRANTY AND LIABILITY DISCLAIMERS AND LIMITATIONS. YOUR INSTALLATION AND USE OF THE APPLIED BIOSYSTEMS SOFTWARE IS SUBJECT TO THE TERMS AND CONDITIONS CONTAINED IN THIS END USER SOFTWARE LICENSE AGREEMENT.

IF YOU DO NOT AGREE TO THE TERMS AND CONDITIONS OF THIS LICENSE, YOU SHOULD PROMPTLY RETURN THIS SOFTWARE, TOGETHER WITH ALL PACKAGING, TO APPLIED BIOSYSTEMS AND YOUR PURCHASE PRICE WILL BE REFUNDED.

This Applied Biosystems End User License Agreement accompanies an Applied Biosystems® software product ("Software") and related explanatory materials ("Documentation"). The term "Software" also includes any upgrades, modified versions, updates, additions and copies of the Software licensed to you by Applied Biosystems. The term "Applied Biosystems," as used in this License, means Applied Biosystems, LLC. The term "License" or "Agreement" means this End User Software License Agreement. The term "you" or "Licensee" means the purchaser of this license to use the Software.

Third party products

This Software uses third-party software components from several sources. Portions of these software components are copyrighted and licensed by their respective owners. Various components require distribution of source code or if a URL is used to point the end-user to a source-code repository, and the source code is not available at such site, the distributor must, for a time determined by the license, offer to provide the source code. In such cases, please contact your Life Technologies representative. As well, various licenses require that the end-user receive a copy of the license. Such licenses may be found on the distribution media in a folder called "Licenses." In order to use this Software, the end-user must abide by the terms and conditions of these third-party licenses. After installation, the licenses may also be found in a folder named "Licenses" located in the Software installation's root directory.

Title

Title, ownership rights and intellectual property rights in and to the Software and Documentation shall at all times remain with Applied Biosystems, LLC and its subsidiaries, and their suppliers. All rights not specifically granted by this License, including Federal and international copyrights, are reserved by Life Technologies or their respective owners.

Copyright

The Software, including its structure, organization, code, user interface and associated Documentation, is a proprietary product of Life Technologies or its suppliers, and is protected by international laws of copyright. The law provides for civil and criminal penalties for anyone in violation of the laws of copyright.

License

- Use of the software
 1. 1.Subject to the terms and conditions of this Agreement, Applied Biosystems, LLC grants the purchaser of this product a non-exclusive license only to install and use the Software to operate the single product in connection with which this License was purchased and to display, analyze and otherwise manipulate data generated by the use of such product. There is no limit to the number of computers on which you may install and use the Software to display, analyze and otherwise manipulate such data.
 - **2.** If the Software uses registration codes, access to the number of licensed copies of Software is controlled by a registration code. For example, if you have a registration code that enables you to use five copies of Software simultaneously, you cannot install the Software on more than five separate computers.
 - **3.** You may make one copy of the Software in machine-readable form solely for backup or archival purposes. You must reproduce on any such copy all copyright notices and any other proprietary legends found on the original. You may not make any other copies of the Software except as permitted under Section 1 above.
 - Restrictions1. You agree that you will not copy, transfer, rent, modify, use or merge the Software, or the associated documentation, in whole or in part, except as expressly permitted in this Agreement.
 - **2.** You agree that you will not reverse assemble, decompile, or otherwise reverse engineer the Software.
 - **3.** You agree that you will not remove any proprietary, copyright, trade secret or warning legend from the Software or any Documentation.

- **4.** You agree to fully comply with all export laws and restrictions and regulations of the United States or applicable foreign agencies or authorities. You agree that you will not export or reexport, directly or indirectly, the Software into any country prohibited by the United States Export Administration Act and the regulations thereunder or other applicable United States law.
- **5.** You agree that you will not modify, sell, rent, transfer (except temporarily in the event of a computer malfunction), resell for profit, or distribute this license or the Software, or create derivative works based on the Software, or any part thereof or any interest therein. Notwithstanding the foregoing, if this Software is instrument operating software, you may transfer this Software to a purchaser of the specific instrument in or for which this Software is installed in connection with any sale of such instrument, provided that the transfere agrees to be bound by and to comply with the provisions of this Agreement.
- **Trial** If this license is granted on a trial basis, you are hereby notified that license management software may be included to automatically cause the Software to cease functioning at the end of the trial period.
- **Termination** You may terminate this Agreement by discontinuing use of the Software, removing all copies from your computers and storage media, and returning the Software and Documentation, and all copies thereof, to Life Technologies. Life Technologies may terminate this Agreement if you fail to comply with all of its terms, in which case you agree to discontinue using the Software, remove all copies from your computers and storage media, and return the Software and Documentation, and all copies thereof, to Life Technologies.
- US government end users The Software is a "commercial item," as that term is defined in 48 C.F.R. 2.101 (Oct. 1995), consisting of "commercialcomputer software" and"commercial computer software documentation," as such terms are used in 48 C.F.R. 12.212 (Sept. 1995). Consistent with 48 C.F.R. 12.212 and 48 C.F.R. 227.7202-1 through 227.7202-4 (June 1995), all U.S. Government End Users acquire the Software with only those rights set forth herein.

European community end users If this Software is used within a country of the European Community, nothing in this Agreement shall be construed as restricting any rights available under the European Community Software Directive, O.J. Eur. Comm. (No. L. 122) 42 (1991).

Regulated uses You acknowledge that the Software has not been cleared, approved, registered or otherwise qualified (collectively, "Approval") by Applied Biosystems, LLC with any regulatory agency for use in diagnostic or therapeutic procedures, or for any other use requiring compliance with any federal or state law regulating diagnostic or therapeutic products, blood products, medical devices or any similar product (hereafter collectively referred to as "federal or state drug laws"). The Software may not be used for any purpose that would require any such Approval unless proper Approval is obtained. You

agree that if you elect to use the Software for a purpose that would subject you or the Software to the jurisdiction of any federal or state drug laws, you will be solely responsible for obtaining any required Approvals and otherwise ensuring that your use of the Software complies with such laws.

Limited warranty and limitation of remedies

Limited Warranty. Applied Biosystems warrants that, during the same period as of the SOLiDTM 3 Plus Analyzer for which this Software is an instrument operating software, the Software will function substantially in accordance with the functions and features described in the Documentation delivered with the Software when properly installed, and that for a period of ninety days from the beginning of the applicable warranty period (as described below) the tapes, CDs, diskettes or other media bearing the Software will be free of defects in materials and workmanship under normal use.

The above warranties do not apply to defects resulting from misuse, neglect, or accident, including without limitation: operation outside of the environmental or use specifications, or not in conformance with the instructions for any instrument system, software, or accessories; improper or inadequate maintenance by the user; installation of software or interfacing, or use in combination with software or products not supplied or authorized by Applied Biosystems; intrusive activity, including without limitation computer viruses, hackers or other unauthorized interactions with instrument or software that detrimentally affects normal operations; and modification or repair of the products not authorized by Applied Biosystems.

Warranty Period Commencement Date. The applicable warranty period for software begins on the earlier of the date of installation or three (3) months from the date of shipment for software installed by Applied Biosystems' personnel. For software installed by the purchaser or anyone other than Applied Biosystems, the warranty period begins on the date the software is delivered to you. The applicable warranty period for media begins on the date the media is delivered to the purchaser.

APPLIED BIOSYSTEMS MAKES NO OTHER WARRANTIES OF ANY KIND WHATSOEVER, EXPRESS OR IMPLIED, WITH RESPECT TO THE SOFTWARE OR DOCUMENTATION, INCLUDING BUT NOT LIMITED TO WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE OR MERCHANTABILITY OR THAT THE SOFTWARE OR DOCUMENTATION IS NON-INFRINGING. ALL OTHER WARRANTIES ARE EXPRESSLY DISCLAIMED. WITHOUT LIMITING THE GENERALITY OF THE FOREGOING, APPLIED BIOSYSTEMS MAKES NO WARRANTIES THAT THE SOFTWARE WILL MEET YOUR REQUIREMENTS, THAT OPERATION OF THE LICENSED SOFTWARE WILL BE UNINTERRUPTED OR ERROR FREE OR WILL CONFORM EXACTLY TO THE DOCUMENTATION, OR THAT APPLIED BIOSYSTEMS WILL CORRECT ALL PROGRAM ERRORS. APPLIED BIOSYSTEMS' SOLE LIABILITY AND RESPONSIBILITY FOR BREACH OF WARRANTY RELATING TO THE SOFTWARE OR DOCUMENTATION SHALL BE LIMITED, AT APPLIED BIOSYSTEMS' SOLE OPTION, TO (1) CORRECTION OF ANY ERROR IDENTIFIED TO APPLIED BIOSYSTEMS IN A WRITING FROM YOU IN A SUBSEQUENT RELEASE OF THE SOFTWARE, WHICH SHALL BE SUPPLIED TO YOU FREE OF CHARGE, (2) ACCEPTING A RETURN OF THE PRODUCT, AND REFUNDING THE PURCHASE PRICE UPON RETURN OF THE PRODUCT AND REMOVAL OF ALL COPIES OF THE SOFTWARE FROM YOUR COMPUTERS AND STORAGE DEVICES, (3) REPLACEMENT OF THE DEFECTIVE SOFTWARE WITH A FUNCTIONALLY EQUIVALENT PROGRAM

AT NO CHARGE TO YOU, OR (4) PROVIDING A REASONABLE WORK AROUND WITHIN A REASONABLE TIME. APPLIED BIOSYSTEMS SOLE LIABILITY AND RESPONSIBILITY UNDER THIS AGREEMENT FOR BREACH OF WARRANTY RELATING TO MEDIA IS THE REPLACEMENT OF DEFECTIVE MEDIA RETURNED WITHIN 90 DAYS OF THE DELIVERY DATE. THESE ARE YOUR SOLE AND EXCLUSIVE REMEDIES FOR ANY BREACH OF WARRANTY. WARRANTY CLAIMS MUST BE MADE WITHIN THE APPLICABLE WARRANTY PERIOD.

Limitation of liability

IN NO EVENT SHALL APPLIED BIOSYSTEMS OR ITS SUPPLIERS BE RESPONSIBLE OR LIABLE, WHETHER IN CONTRACT, TORT, WARRANTY OR UNDER ANY STATUTE (INCLUDING WITHOUT LIMITATION ANY TRADE PRACTICE, UNFAIR COMPETITION OR OTHER STATUTE OF SIMILAR IMPORT) OR ON ANY OTHER BASIS FOR SPECIAL, INDIRECT, INCIDENTAL, MULTIPLE, PUNITIVE, OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE POSSESSION OR USE OF, OR THE INABILITY TO USE, THE SOFTWARE OR DOCUMENTATION, EVEN IF APPLIED BIOSYSTEMS IS ADVISED IN ADVANCE OF THE POSSIBILITY OF SUCH DAMAGES. INCLUDING WITHOUT LIMITATION DAMAGES ARISING FROM OR RELATED TO LOSS OF USE. LOSS OF DATA. DOWNTIME, OR FOR LOSS OF REVENUE, PROFITS, GOODWILL OR BUSINESS OR OTHER FINANCIAL LOSS. IN ANY CASE, THE ENTIRE LIABILITY OF APPLIED BIOSYSTEMS' AND ITS SUPPLIERS UNDER THIS LICENSE. OR ARISING OUT OF THE USE OF THE SOFTWARE, SHALL NOT EXCEED IN THE AGGREGATE THE PURCHASE PRICE OF THE PRODUCT.

SOME STATES, COUNTRIES OR JURISDICTIONS LIMIT THE SCOPE OF OR PRECLUDE LIMITATIONS OR EXCLUSION OF REMEDIES OR DAMAGES, OR OF LIABILITY, SUCH AS LIABILITY FOR GROSS NEGLIGENCE OR WILLFUL MISCONDUCT, AS OR TO THE EXTENT SET FORTH ABOVE, OR DO NOT ALLOW IMPLIED WARRANTIES TO BE EXCLUDED. IN SUCH STATES, COUNTRIES OR JURISDICTIONS, THE LIMITATION OR EXCLUSION OF WARRANTIES, REMEDIES, DAMAGES OR LIABILITY SET FORTH ABOVE MAY NOT APPLY TO YOU. HOWEVER, ALTHOUGH THEY SHALL NOT APPLY TO THE EXTENT PROHIBITED BY LAW, THEY SHALL APPLY TO THE FULLEST EXTENT PERMITTED BY LAW. YOU MAY ALSO HAVE OTHER RIGHTS THAT VARY BY STATE, COUNTRY OR OTHER JURISDICTION.

General

This Agreement shall be governed by laws of the State of California, exclusive of its conflict of laws provisions. This Agreement shall not be governed by the United Nations Convention on Contracts for the International Sale of Goods. This Agreement contains the complete agreement between the parties with respect to the subject matter hereof, and supersedes all prior or contemporaneous agreements or understandings, whether oral or written. If any provision of this Agreement is held by a court of competent jurisdiction to be contrary to law, that provision will be enforced to the maximum extent permissible, and the remaining provisions of this Agreement, and any proceedings relating to this Agreement, shall be English. You agree to bear any and all costs of translation, if necessary. The headings to the sections of this Agreement are used for convenience only and shall have no substantive meaning. All questions concerning this Agreement shall be directed to: Applied Biosystems, 850 Lincoln Centre Drive, Foster City, CA 94404-1128, Attention: Legal Department.

Unpublished rights reserved under the copyright laws of the United States. Applied Biosystems, LLC, 850 Lincoln Centre Drive, Foster City, CA 94404.

Applied Biosystems is a registered trademark of Life Technologies or its subsidiaries in the U.S. and/or certain other countries.

All other trademarks are the sole property of their respective owners.

J

Safety

This appendix covers:
Instrumentation safety 154
Symbols on instruments 154
Safety labels on instruments 156
General instrument safety 157
Physical hazard safety 158
Electrical safety
Workstation safety
Safety and electromagnetic compatibility (EMC) standards 161
Chemical safety 162
General chemical safety 162
MSDSs
Chemical waste safety 164
Biological hazard safety 166
Safety alerts

Instrumentation safety

Symbols on instruments

Electrical symbols on instruments

The following table describes the electrical symbols that may be displayed on Applied Biosystems instruments.

Symbol	Description
	Indicates the On position of the main power switch.
0	Indicates the Off position of the main power switch.
Ψ	Indicates a standby switch by which the instrument is switched on to the Standby condition. Hazardous voltage may be present if this switch is on standby.
$\mathbf{\Phi}$	Indicates the On/Off position of a push-push main power switch.
Ŧ	Indicates a terminal that may be connected to the signal ground reference o another instrument. This is not a protected ground terminal.
	Indicates a protective grounding terminal that must be connected to earth ground before any other electrical connections are made to the instrument.
~	Indicates a terminal that can receive or supply alternating current or voltage
R	Indicates a terminal that can receive or supply alternating or direct current or voltage.

Safety symbols The following table describes the safety symbols that may be displayed on Applied Biosystems instruments. Each symbol may appear by itself or with text that explains the relevant hazard (see "Safety labels on instruments" on page 156). These safety symbols may also appear next to DANGERS, WARNINGS, and CAUTIONS that occur in the text of this and other product-support documents.

Symbol	Description	
	Indicates that you should consult the manual for further information and to proceed with appropriate caution.	
4	Indicates the presence of an electrical shock hazard and to proceed with appropriate caution.	
	Indicates the presence of a hot surface or other high-temperature hazard and to proceed with appropriate caution.	

Symbol	Description
	Indicates the presence of a laser inside the instrument and to proceed with appropriate caution.
	Indicates the presence of moving parts and to proceed with appropriate caution.
A	Indicates the presence of a biological hazard and to proceed with appropriate caution.
	Indicates the presence of a radiological hazard and to proceed with appropriate caution.
K	Indicates the presence of a slipping hazard and to proceed with appropriate caution.
	Indicates the presence of an ultraviolet light (in the instrument?) and to proceed with appropriate caution.
Æ	CAUTION! Potential overhead hazard.

Environmental symbols on instruments

The following symbol applies to all Applied Biosystems electrical and electronic products placed on the European market after August 13, 2005.

Symbol	Description		
	Do not dispose of this product as unsorted municipal waste. Follow local municipal waste ordinances for proper disposal provisions to reduce the environmental impact of waste electrical and electronic equipment (WEEE).		
∕' @∖	European Union customers: Call your local Applied Biosystems Customer Service office for equipment pick-up and recycling. See www.appliedbiosystems.com for a list of customer service offices in the European Union.		

Safety labels on instruments

The SOLiD[™] 3 Plus System contains warnings at the locations listed in Table 45.

Table 45 Where to find safety labels on the SOLiD[™] 3 Plus System

Safety label	Located by
CAUTION! Hot Surfaces.	Flow cell cover and inside arc lamp box
CAUTION! Replace only with CERMAX Ix300f, 300 W Lamp	Arc lamp box cover
WARNING! HOT! Do not remove lamp until 15 minutes after disconnecting supply!Surfaces.	Arc lamp box cover
CAUTION! Crush/Pinch hazard	Syringe pump

General instrument safety

WARNING! PHYSICAL INJURY HAZARD. Use this product only as specified in this document. Using this instrument in a manner not specified by Applied Biosystems may result in personal injury or damage to the instrument.

Moving and lifting the instrument

CAUTION! PHYSICAL INJURY HAZARD. The instrument is to be moved and positioned only by the personnel or vendor specified in the applicable site preparation guide. If you decide to lift or move the instrument after it has been installed, do not attempt to lift or move the instrument without the assistance of others, the use of appropriate moving equipment, and proper lifting techniques. Improper lifting can cause painful and permanent back injury. Depending on the weight, moving or lifting an instrument may require two or more persons.

Moving and lifting stand-alone computers and monitors **WARNING!** Do not attempt to lift or move the computer or the monitor without the assistance of others. Depending on the weight of the computer and/or the monitor, moving them may require two or more people.

Things to consider before lifting the computer and/or the monitor:

- Make sure that you have a secure, comfortable grip on the computer or the monitor when lifting.
- Make sure that the path from where the object is to where it is being moved is clear of obstructions.
- Do not lift an object and twist your torso at the same time.
- Keep your spine in a good neutral position while lifting with your legs.
- Participants should coordinate lift and move intentions with each other before lifting and carrying.
- Instead of lifting the object from the packing box, carefully tilt the box on its side and hold it stationary while someone slides the contents out of the box.

Operating the Ensure that anyone who operates the instrument has:

- Received instructions in both general safety practices for laboratories and specific safety practices for the instrument.
- Read and understood all applicable Material Safety Data Sheets (MSDSs). See "About MSDSs" on page 163.

Cleaning or decontaminating the instrument **CAUTION!** Before using a cleaning or decontamination method other than those recommended by the manufacturer, verify with the manufacturer that the proposed method will not damage the equipment.

Appendix J Safety Instrumentation safety

Physical hazard safety

Ultraviolet light

WARNING! ULTRAVIOLET LIGHT HAZARD. Looking directly at a UV light source can cause serious eye damage. Never look directly at a UV light source and always prevent others from UV exposure. Follow the manufacturer's recommendations for appropriate protective eyewear and clothing.

Moving parts

WARNING! PHYSICAL INJURY HAZARD. Moving parts can crush and cut. Keep hands clear of moving parts while operating the instrument. Disconnect power before servicing the instrument.

Solvents and pressurized fluids

WARNING! PHYSICAL INJURY HAZARD. Always wear eye protection when working with solvents or any pressurized fluids.

• Be aware that polymeric tubing is a polymeric material. Use caution when working with any polymer tubing that is under pressure.

Always wear eye protection when near pressurized polymer tubing.

- Extinguish all nearby flames if you use flammable solvents.
- Do not use polymeric tubing that has been severely stressed or kinked.
- Do not use polymeric tubing with tetrahydrofuran or nitric and sulfuric acids.
- Be aware that methylene chloride and dimethyl sulfoxide cause polymeric tubing to swell and greatly reduce the rupture pressure of the tubing.
- Be aware that high solvent flow rates (~40 mL/min) may cause a static charge to build up on the surface of the tubing. Electrical sparks may result.

Electrical safety

WARNING! ELECTRICAL SHOCK HAZARD. Severe electrical shock can result from operating the SOLiD[™] 3 Plus System without its instrument panels in place. Do not remove instrument panels. High-voltage contacts are exposed when instrument panels are removed from the instrument.

Fuses

WARNING! FIRE HAZARD. Improper fuses or high-voltage supply can damage the instrument wiring system and cause a fire. Before turning on the instrument, verify that the fuses are properly installed and that the instrument voltage matches the power supply in your laboratory.

WARNING! FIRE HAZARD. For continued protection against the risk of fire, replace fuses only with fuses of the type and rating specified for the instrument.

Power

WARNING! ELECTRICAL HAZARD. Grounding circuit continuity is required for the safe operation of equipment. Never operate equipment with the grounding conductor disconnected.

WARNING! ELECTRICAL HAZARD. Use properly configured and approved line cords for the voltage supply in your facility.

WARNING! ELECTRICAL HAZARD. Plug the system into a properly grounded receptacle with adequate current capacity.

Overvoltage rating The SOLiD[™] 3 Plus System has an installation (overvoltage) category of II, and is classified as portable equipment.

Workstation safety

Correct ergonomic configuration of your workstation can reduce or prevent effects such as fatigue, pain, and strain. Minimize or eliminate these effects by configuring your workstation to promote neutral or relaxed working positions.

CAUTION! MUSCULOSKELETAL AND REPETITIVE MOTION

• HAZARD. These hazards are caused by potential risk factors that include but are not limited to repetitive motion, awkward posture, forceful exertion, holding static unhealthy positions, contact pressure, and other workstation environmental factors.

To minimize musculoskeletal and repetitive motion risks:

- Use equipment that comfortably supports you in neutral working positions and allows adequate accessibility to the keyboard, monitor, and mouse.
- Position the keyboard, mouse, and monitor to promote relaxed body and head postures.

Safety and electromagnetic compatibility (EMC) standards

This section provides information on:

- U.S. and Canadian safety standards
- Canadian EMC standard
- European safety and EMC standards
- Australian EMC Standards

U.S. and Canadian safety standards The SOLiD[™] 3 Plus System has been tested to and complies with standard:

UL 61010-1/CSA C22.2 No. 61010-1, "Safety Requirements for Electrical Equipment for Measurement, Control, and Laboratory Use, Part 1: General Requirements."

UL 61010-2-010, "Particular Requirements for Laboratory Equipment for the Heating of Materials."

Canadian EMC standard

This instrument has been tested to and complies with ICES-001, Issue 3: "Industrial, Scientific, and Medical Radio Frequency Generators."

European safety and EMC standards

Safety

This instrument meets European requirements for safety (Low Voltage Directive 2006/95/EC). This instrument has been tested to and complies with standards EN 61010-1:2001, "Safety Requirements for Electrical Equipment for Measurement, Control and Laboratory Use, Part 1: General Requirements."

EN 61010-2-010, "Particular Requirements for Laboratory Equipment for the Heating of Materials."

EN 61010-2-081, "Particular Requirements for Automatic and Semi-Automatic Laboratory Equipment for Analysis and Other Purposes."

EMC

This instrument meets European requirements for emission and immunity (EMC Directive 2004/108/EC). This instrument has been tested to and complies with standard EN 61326 (Group 1, Class B), "Electrical Equipment for Measurement, Control and Laboratory Use – EMC Requirements."

Australian EMC Standards

This instrument has been tested to and complies with standard AS/NZS 2064, "Limits and Methods Measurement of Electromagnetic Disturbance Characteristics of Industrial, Scientific, and Medical (ISM) Radio-frequency Equipment."

Chemical safety

General chemical safety

Chemical hazard warning

WARNING! CHEMICAL HAZARD. Before handling any chemicals, refer to the Material Safety Data Sheet (MSDS) provided by the manufacturer, and observe all relevant precautions.

WARNING! CHEMICAL HAZARD. All chemicals in the instrument, including liquid in the lines, are potentially hazardous. Always determine what chemicals have been used in the instrument before changing reagents or instrument components. Wear appropriate eyewear, protective clothing, and gloves when working on the instrument.

WARNING! CHEMICAL HAZARD. Four-liter reagent and waste bottles can crack and leak. Each 4-liter bottle should be secured in a low-density polyethylene safety container with the cover fastened and the handles locked in the upright position. Wear appropriate eyewear, clothing, and gloves when handling reagent and waste bottles.

WARNING! CHEMICAL STORAGE HAZARD. Never collect or store waste in a glass container because of the risk of breaking or shattering. Reagent and waste bottles can crack and leak. Each waste bottle should be secured in a lowdensity polyethylene safety container with the cover fastened and the handles locked in the upright position. Wear appropriate eyewear, clothing, and gloves when handling reagent and waste bottles.

Chemical safety T guidelines

To minimize the hazards of chemicals:

- Read and understand the Material Safety Data Sheets (MSDSs) provided by the chemical manufacturer before you store, handle, or work with any chemicals or hazardous materials. (See "About MSDSs" on page 163.)
- Minimize contact with chemicals. Wear appropriate personal protective equipment when handling chemicals (for example, safety glasses, gloves, or protective clothing). For additional safety guidelines, consult the MSDS.
- Minimize the inhalation of chemicals. Do not leave chemical containers open. Use only with adequate ventilation (for example, fume hood). For additional safety guidelines, consult the MSDS.
- Check regularly for chemical leaks or spills. If a leak or spill occurs, follow the manufacturer's cleanup procedures as recommended in the MSDS.
- Comply with all local, state/provincial, or national laws and regulations related to chemical storage, handling, and disposal.

MSDSs

About MSDSs Chemical manufacturers supply current Material Safety Data Sheets (MSDSs) with shipments of hazardous chemicals to new customers. They also provide MSDSs with the first shipment of a hazardous chemical to a customer after an MSDS has been updated. MSDSs provide the safety information you need to store, handle, transport, and dispose of the chemicals safely.

Each time you receive a new MSDS packaged with a hazardous chemical, be sure to replace the appropriate MSDS in your files.

Obtaining
MSDSsThe MSDS for any chemical supplied by Applied Biosystems is available to you free
24 hours a day. To obtain MSDSs:

- 1. Go to www.appliedbiosystems.com, click Support, then select MSDS.
- **2.** In the Keyword Search field, enter the chemical name, product name, MSDS part number, or other information that appears in the MSDS of interest. Select the language of your choice, then click **Search**.
- **3.** Find the document of interest, right-click the document title, then select any of the following:
 - **Open** To view the document
 - **Print Target** To print the document
 - Save Target As To download a PDF version of the document to a destination that you choose
- **Note:** For the MSDSs of chemicals not distributed by Applied Biosystems, contact the chemical manufacturer.

Chemical waste safety

Chemical waste hazards **CAUTION! HAZARDOUS WASTE.** Refer to Material Safety Data Sheets and local regulations for handling and disposal.

WARNING! CHEMICAL WASTE HAZARD. Wastes produced by Applied Biosystems instruments are potentially hazardous and can cause injury, illness, or death.

WARNING! CHEMICAL STORAGE HAZARD. Never collect or store waste in a glass container because of the risk of breaking or shattering. Reagent and waste bottles can crack and leak. Each waste bottle should be secured in a lowdensity polyethylene safety container with the cover fastened and the handles locked in the upright position. Wear appropriate eyewear, clothing, and gloves when handling reagent and waste bottles.

Chemical waste safety guidelines	To minimize the hazards of chemical waste:		
	• Read and understand the Material Safety Data Sheets (MSDSs) provided by the manufacturers of the chemicals in the waste container before you store, handle, or dispose of chemical waste.		
	• Provide primary and secondary waste containers. (A primary waste container holds the immediate waste. A secondary container contains spills or leaks from the primary container. Both containers must be compatible with the waste material and meet federal, state, and local requirements for container storage.)		
	• Minimize contact with chemicals. Wear appropriate personal protective equipment when handling chemicals (for example, safety glasses, gloves, or protective clothing). For additional safety guidelines, consult the MSDS.		
	• Minimize the inhalation of chemicals. Do not leave chemical containers open. Use only with adequate ventilation (for example, fume hood). For additional safety guidelines, consult the MSDS.		
	• Handle chemical wastes in a fume hood.		
	• After emptying a waste container, seal it with the cap provided.		
	• Dispose of the contents of the waste tray and waste bottle in accordance with good laboratory practices and local, state/provincial, or national environmental and health regulations.		
Waste disposal	If potentially hazardous waste is generated when you operate the instrument, you must:		
	• Characterize (by analysis if necessary) the waste generated by the particular applications, reagents, and substrates used in your laboratory.		
	• Ensure the health and safety of all personnel in your laboratory.		

- Ensure that the instrument waste is stored, transferred, transported, and disposed of according to all local, state/provincial, and/or national regulations.
- () **IMPORTANT!** Radioactive or biohazardous materials may require special handling, and disposal limitations may apply.

Biological hazard safety

General biohazard

WARNING! BIOHAZARD. Biological samples such as tissues, body fluids, infectious agents, and blood of humans and other animals have the potential to transmit infectious diseases. Follow all applicable local, state/provincial, and/or national regulations. Wear appropriate protective equipment, which includes but is not limited to: protective eyewear, face shield, clothing/lab coat, and gloves. All work should be conducted in properly equipped facilities using the appropriate safety equipment (for example, physical containment devices). Individuals should be trained according to applicable regulatory and company/institution requirements before working with potentially infectious materials. Read and follow the applicable guidelines and/or regulatory requirements in the following:

- U.S. Department of Health and Human Services guidelines published in Biosafety in Microbiological and Biomedical Laboratories (stock no. 017-040-00547-4; bmbl.od.nih.gov)
- Occupational Safety and Health Standards, Bloodborne Pathogens (29 CFR§1910.1030; www.access.gpo.gov/ nara/cfr/waisidx_01/29cfr1910a_01.html).
- Your company's/institution's Biosafety Program protocols for working with/handling potentially infectious materials.

Additional information about biohazard guidelines is available at:

www.cdc.gov

Safety alerts

For the definitions of the alert words IMPORTANT, CAUTION, WARNING, and DANGER, see "Safety alert words" on page vii.

Appendix J Safety Safety alerts

Glossary

barcode	Unique sequence identifier added to the sample during library construction	
barcoded fragment library	Fragment library with a barcode sequence appended to the 3' end of the sheared DNA fragments	
BC tag	Barcode tag	
bead count	The number of beads detected in a panel	
bead signal	The average signal intensity of every pixel associated with a bead	
best beads	Number of beads that meet a stringent set of criteria based on spectral purity and intensity	
F3 tag	Tag to be sequenced using primers specific to the P1 Adaptor sequence	
fragment library	Library consisting of a sheared DNA fragment with P1 and P2 Adaptors ligated to the 5' end and 3' end respectively	
good beads	The number of beads that meet criteria (less stringent than best beads criteria) based on spectral purity and intensity	
image signal	The average signal intensity of every pixel whether or not it is associated with a bead or not	
internal adaptor	Double-stranded oligonucleotide located between two tags to be sequenced	
library	Set of DNA tags prepared from the same biological sample to be sequenced on the SOLiD [™] System	
mappable beads	Beads with template that map back to the reference genome	
mate-paired library	Library consisting of two DNA tags a known distance apart linked by an internal adaptor with P1 and P2 Adaptors ligated to the 5' end and 3' end, respectively	
multiplexing	Method to analyze multiple biological samples in a single spot using barcodes	
N2S plot	Plot indicating noise-to-signal for each dye	
on-axis beads	The frequency of template-positive beads that meet a defined threshold of spectral purity and signal intensity after a single ligation step	
optimal titration point	Library template concentration that gives the best sequencing results	

Glossary	

P1 Adaptor	Double-stranded oligonucleotide ligated at the $5'$ end of the library	
P2 Adaptor	Double-stranded oligonucleotide ligated at the 3' end of the library	
P2#/P1# ratio	The frequency of template-positive beads (P2#) relative to total beads (P1#) deposited on the slide; this metric is also referred to as "% P2 Positive" value	
P2-positive beads	SOLiD [™] P1 DNA beads with fully extended and amplified template	
pulse-spin	Place the tube in a picofuge and spin for a few seconds to bring down any beads or liquid stuck on the walls of the tube	
R3 tag	Tag to be sequenced using primers specific to the Internal Adaptor sequence	
remove the supernatant	Use a pipette to carefully remove the liquid from the tube without disturbing any beads	
resuspend the	The beads can be resuspended in one of two ways:	
beads	• Gently pipette the solution up and down until the beads are suspended. Using a slower speed to aspirate and expel the solution minimizes the amount of beads that stick to the inside of the pipette tip.	
	• Vortex the solution until all of the beads are suspended. Place the beads in a picofuge and pulse-spin for a few seconds to bring down any beads stuck on the walls of the tube. Do not over-spin the beads or the beads aggregate into a pellet.	
Satay plot	Indicator of spectral purity and signal intensity of the beads	
sonicate the beads	Place the tube containing the beads in the appropriate tube holder, then place in the Covaris TM S2 System; afterwards, run the appropriate program	
tag	A length of DNA to be sequenced	
templated bead preparation	Process of adding library template to beads by emulsion PCR, enriching the beads to remove beads without template, then modifying the 3' end of the template on the beads to prepare for bead deposition and sequencing	
templated beads	SOLiD [™] P1 DNA Beads with amplified library template attached	
titration	Library template concentration used to prepare an emulsion	
titration metric	Product of % P2 positive beads and the On-Axis beads; the titration that generates the highest titration metric value is the optimal titration point for a given library	
usable beads	Number of beads that are called during color-calling	
workflow analysis (WFA) run	Type of run on the SOLiD ^{TM} system in which a small portion of templated beads are deposited and analyzed to test for templated bead quality	

Documentation

Related documentation

Document	Part number	Description
Applied Biosystems SOLiD [™] 3 Plus System Library Preparation Guide	4442697	Describes how to prepare fragment and mate-paired libraries for templated bead preparation and sequencing on the SOLiD [™] 3 Plus System.
Applied Biosystems SOLiD [™] 3 Plus System Library Preparation Quick Reference Card	4442698	Provides brief, step-by-step procedures for preparing libraries.
Applied Biosystems SOLiD [™] 3 Plus System Templated Bead Preparation Guide	4442695	Describes how to prepare templated beads by emulsion PCR (ePCR), required before sequencing on the SOLiD [™] 3 Plus System.
Applied Biosystems SOLiD [™] 3 Plus System Templated Bead Preparation Quick Reference Card	4442696	Provides brief, step-by-step procedures for preparing templated beads by emulsion PCR (ePCR), required before sequencing on the SOLiD [™] 3 Plus System.
Applied Biosystems SOLiD [™] 3 Plus System Instrument Operation Quick Reference Card	4442358	Provides brief, step-by-step procedures for loading and running the SOLiD [™] 3 Plus System.
Applied Biosystems SOLiD [™] 3 Plus System Site Preparation Guide	4444009	Provides all the information that you need to set up the SOLiD [™] 3 Plus System.
Applied Biosystems SOLiD [™] SETS Software v3.5 Getting Started Guide	4444007	Provides an alternate platform to monitor runs, modify settings, and reanalyze previous runs that are performed on the SOLiD [™] 3 Plus System.
Applied Biosystems SOLiD [™] ICS Software v3.5 Help	-	Describes the software and provides procedures for common tasks (see the Instrument Control Software).
Applied Biosystems SOLiD [™] Analysis Tools (SAT) v3.5 Reference Guide	4443929	Provides advanced technical information on how to modify pipelines for in-depth sequencing analysis using the SOLiD [™] 3 Plus System.
Applied Biosystems SOLiD [™] BioScope Software v1.0 Getting Started Guide	4442694	Provides a bioinformatics analysis framework for flexible application analysis (data-generated mapping, SNPs, count reads) from sequencing runs.

Note: For additional documentation, see "How to obtain support" on page ix.

Send us your comments

Applied Biosystems welcomes your comments and suggestions for improving its user documents. You can e-mail your comments to:

techpubs@appliedbiosystems.com

() **IMPORTANT!** The e-mail address above is for submitting comments and suggestions relating *only* to documentation. To order documents, download PDF files, or for help with a technical question, see "How to obtain support" on page ix.

Index

Α

Applied Biosystems customer feedback on documentation 172 Information Development department 172

В

barcode sequencing fill volumes for reagents 119 reagent strip block layout 34 reagent strip layouts 121 barcode: creating a library for a barcoded sample 58 beads concentration chart 13 deposition density, determining 14, 40, 50 number per well according to run type 1 number to use according to run 14 beads, depositing 13 biohazardous waste, handling 166 bold text, when to use ix bottles clean the Instrument Buffer bottle 94 position of buffer bottles in chiller block 22 position of buffers and waste in the instrument 21 position of reagents in the instrument 22

С

CAUTION, description vii Change Primer Schedule command 69 Change Run Progress Point command 70 checklists and workflow tracking forms 129 checklists, workflow 129 chemical safety 162 chemical waste safety 164 clean flush the fluidic lines 95 the Instrument Buffer bottle 94 the reagent strip cover 100the SOLiD[™] Deposition Chamber using a sonicator 90 the SOLiD[™] Deposition Chamber using Extran 300 92 conventions bold text ix for describing menu commands ix IMPORTANTS! ix in this guide ix

italic text ix Notes ix user attention words ix
Covaris ™ S2 System operation and maintenance 135
customer feedback, on Applied Biosystems documents 172
cycle scans viewing, for WFA run 48
viewing, in sequencing run 72

D

DANGER, description vii data analysis, about 8 density, bead deposition determining 14, 40, 50 Deposition Chamber clean using a sonicator 90 clean using Extran 300 92 documentation, related 171

Е

electrical safety 159 electromagnetic compatibility standards. *See* EMC standards EMC standards 161 end user software license agreement 145 ergonomics, safety 160

F

fill volumes for on-instrument reagents 118 flowcell O-ring, install 99 storing the slide in 115 flush the fluidic lines 95 focus range detecting 44 finding manually 103 fragment sequencing 35 bp reagent strip block layout 32 50 bp reagent strip block layout 31 fill volumes for on-instrument reagents 118 reagent strip layouts 120 typical workflow 3

G

glossary 169 guidelines chemical safety 162 chemical waste disposal 164 chemical waste safety 164

Н

hazard icons. *See* safety symbols, on instruments 154 symbols. *See* safety symbols, on instruments hazards. *See* safety heat maps viewing, for Workflow Analysis (WFA) run 48 viewing, in sequencing run 71

Image Prep, and pausing/resuming a run 66 IMPORTANT, description vii Information Development department, contacting 172 install on-instrument reagents 19 O-ring 27 reagent strips 30 slides on the instrument 25 the SOLiD[™] flowcell O-ring 99 installation category 159 instrument operation, safety 157 process times 123 Instrument Buffer bottle, clean 94 introduction 1 italic text, when to use ix

L

library, creating; for barcoded samples 58
Light Source, replacing 101
log
view run log for a Workflow Analysis (WFA) run 48
view run log in a sequencing run 71

Μ

maintenance, Covaris ™ S2 System 135
manually find the focus range 103
manuals, related 171
mate-pair sequencing
35 bp, Tag 1 reagent strip block layout 33
35 bp, Tag 2 reagent strip block layout 34
50 bp, Tag 1 reagent strip block layout 32
fill volumes for on-instrument reagents 118

Tag 1 reagent strip layouts 120 Tag 2 reagent strip layouts 121 typical workflow 5 menu commands, conventions for describing ix moving and lifting safety computers and monitors 157 instrument 157 moving parts, safety 158 MSDSs about vii description 163 obtaining ix, 163 multiplex sequencing run about 5 create a run record 56

Ν

needle and needle holder 30

0

on-Instrument reagent volumes and reagent strip layouts 117 Opti Slide Carrier, SOLID[™] 15, 16, 28 O-ring install 27 picture 27 overvoltage category (rating) 159

Ρ

P2-positive beads 14 pause 69 Pause Run/Resume Run 66 physical hazard safety 158 plumbing system schematic 127 preface vii pre-mixing 66 prepare and install slides and reagents 9 pressurized fluids, safety 158 process times entire 125 individual 124

R

radioactive waste, handling 165 reagent fill volumes, on-instrument 118 install on-instrument reagents 19 strip cover, clean 100 strips, install 30 reagent strip block layouts

barcode sequencing 34 fragment sequencing, 35 bp 32 fragment sequencing, 50 bp 31 mate-pair, Tag 1 35 bp sequencing, 35 bp 33 mate-pair, Tag 1 50 bp sequencing, 50 bp 32 mate-pair, Tag 2 35 bp sequencing, 35 bp 34 Workflow Analysis (WFA) run 31 reagent strip layouts barcode sequencing 121 fragment sequencing 120 mate-pair sequencing, Tag 1 120 mate-pair sequencing, Tag 2 121 Workflow Analysis (WFA) run 122 repetitive motion, safety 160 replace the SOLiD[™] Light Source 101 required kits and equipment sequencing run 82 Workflow Analysis (WFA) run 78 robot position, reset 115 run Change Primer Schedule command 69 Change Run Progress Point command 70 fill volumes for on-instrument reagents 118 log, view, for a sequencing run 71 log, view, for a Workflow Analysis (WFA) run 48 multiplex record, create, for sequencing run 56 number of beads per well 1 Pause Run/Resume Run 66 pause/resume 66 purpose of different types 1 record, create, for Workflow Analysis (WFA) run 40 Run Control menu 68 Set Early Pause Point command 69 standard record, create, for sequencing run 52 Stop Run command 69 summary, about 1 time, estimated 1 types, overview 1 view cycle scans in a sequencing run 72 view heat maps in a sequencing run 71 Workflow Analysis (WFA) 39 Run Control Menu commands 68 Run Definition file, import to set up a run 102

S

safety 153 before operating the instrument 157 biological hazards 166 chemical 162 chemical waste 164 electrical 159 ergonomic 160

guidelines 162, 164 instrument operation 157 labels, on instruments viii, 156 moving and lifting computers and monitors 157 moving and lifting instrument 157 moving parts 158 physical hazard 158 pressurized fluids. See also compressed gases, safety repetitive motion 160 solvents 158 standards 161 symbols, on instruments 154 ultraviolet light 158 workstation 160 Scan Slide, and pausing/resuming a run 66 sequencing run about 2 Change Primer Schedule command 69 Change Run Progress Point command 70 create a multiplex run record 56 create a standard run record 52 fill volumes for on-instrument reagents 118 multiplexed, about 5 pause-resume, for pre-mixing 66 required kits and equipment 82 Run Control menu 68 Set Early Pause Point command 69 set up and perform a run 51 Stop Run command 69 view cycle scans 72 view heat maps 71 view run log 71 workflow 51 Set Early Pause Point command 69 set up a run by importing a Run Definition file 102 set up, control, and monitor the run 37shut down the SOLiD[™] 3 Plus Analyzer 115 slides prepare and install 25 SOLiD Slide Storage Chamber 25 SOLIDTM Opti Slide Carrier 28 SOLID[™] Opti Slide Carrier 15, 16 software license agreement 145 operation, about 8 **SOLIDTM** Opti Slide Carrier lockdown tabs 28 SOLIDTM 3 Plus Analyzer plumbing system schematic 127 solvents, safety 158 standards

EMC 161 safety 161 Stop Run command 69 store the slide in a flowcell 115 strip block layouts 35 bp fragment sequencing 32 50 bp fragment sequencing 31 barcode sequencing 34 mate-pair, Tag 1 35 bp sequencing 33 mate-pair, Tag 1 50 bp sequencing 32 mate-pair, Tag 2 35 bp sequencing 34 Workflow Analysis (WFA) run 31 strip layouts, reagent barcode sequencing 121 fragment sequencing 120 mate-pair sequencing, Tag 1 120 mate-pair sequencing, Tag 2 121 Workflow Analysis (WFA) run 122 supplemental procedures clean the reagent strip cover 100 clean the SOLiD[™] Deposition Chamber using a sonicator 90clean the SOLiD[™] Deposition Chamber using Extran 300 92 flush the fluidic lines 95 install the SOLiD[™] flowcell O-ring 99 manually find the focus range 103 replace the SOLiD[™] Light Source 101 set up a run by importing a Run Definition file 102 shut down the SOLiD[™] 3 Plus Analyzer 115 store the slide in a flowcell 115 symbols, safety 154 syringe 24

Т

```
text conventions ix
times
entire processes 125
individual processes 124
run, estimated 1
tracking forms, workflow 129
training, information on ix
```

U

ultraviolet light, safety 158 user attention words, described ix

V

volumes, fill, for on-instrument reagents 118

W

WARNING, description vii waste disposal, guidelines 164 profiles, description 164 WFA. See Workflow Analysis Workflow Analysis (WFA) run about 2 creating a run record 40 fill volumes for on-instrument reagents 118 reagent strip block layout 31 reagent strip layouts 122 required kits and equipment 78 set up and perform a run 39 view run $\log 48$ workflow 39 workflow checklists and tracking forms 129 workflow diagrams bead concentration chart 13 fragment sequencing run 3 mate-paired sequencing run 5 multiplex fragment sequencing run 7 preparing slides and reagents 11 relationship between types of runs 2 Workflow Analysis (WFA) run 39 workstation safety 160

Part Number 4442357 Rev. A 10/2009

Applied Biosystems

850 Lincoln Centre Drive | Foster City, CA 94404 USA Phone 650.638.5800 | Toll Free 800.345.5224 www.appliedbiosystems.com

Technical Resources and Support

For the latest technical resources and support information for all locations, please refer to our Web site at www.appliedbiosystems.com/support